These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29035805)

  • 1. Velocity of lateral drying fronts in film formation by drying of colloidal dispersions. A 2D simulation.
    Nassar M; Gromer A; Thalmann F; Hébraud P; Holl Y
    J Colloid Interface Sci; 2018 Feb; 511():424-433. PubMed ID: 29035805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Horizontal drying fronts in films of colloidal dispersions: influence of hydrostatic pressure and collective diffusion.
    Nassar M; Gromer A; Favier D; Thalmann F; Hébraud P; Holl Y
    Soft Matter; 2017 Dec; 13(48):9162-9173. PubMed ID: 29177309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drying Mechanisms in Plasticized Latex Films: Role of Horizontal Drying Fronts.
    Divry V; Gromer A; Nassar M; Lambour C; Collin D; Holl Y
    J Phys Chem B; 2016 Jul; 120(27):6791-802. PubMed ID: 27244562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solidification and ordering during directional drying of a colloidal dispersion.
    Goehring L; Clegg WJ; Routh AF
    Langmuir; 2010 Jun; 26(12):9269-75. PubMed ID: 20229997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Shear Bands in Drying Colloidal Dispersions.
    Kiatkirakajorn PC; Goehring L
    Phys Rev Lett; 2015 Aug; 115(8):088302. PubMed ID: 26340215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drying of thin colloidal films.
    Routh AF
    Rep Prog Phys; 2013 Apr; 76(4):046603. PubMed ID: 23502077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Surfactant Distributions in Pressure-Sensitive Adhesive Films Dried from Dispersion under Lab-Scale and Industrial Drying Conditions.
    Baesch S; Siebel D; Schmidt-Hansberg B; Eichholz C; Gerst M; Scharfer P; Schabel W
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8118-28. PubMed ID: 26953641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of Vertical Surfactant Distributions in Drying Latex Films.
    Gromer A; Thalmann F; Hébraud P; Holl Y
    Langmuir; 2017 Jan; 33(2):561-572. PubMed ID: 28001076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal evolution of concentration and microstructure of colloidal films during vertical drying: a lattice Boltzmann simulation study.
    Chun B; Yoo T; Jung HW
    Soft Matter; 2020 Jan; 16(2):523-533. PubMed ID: 31807739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drying dip-coated colloidal films.
    Li J; Cabane B; Sztucki M; Gummel J; Goehring L
    Langmuir; 2012 Jan; 28(1):200-8. PubMed ID: 22053849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of Latex Film Formation Using a Cell Model in Real Space: Vertical Drying.
    Gromer A; Nassar M; Thalmann F; Hébraud P; Holl Y
    Langmuir; 2015 Oct; 31(40):10983-94. PubMed ID: 26378376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How the interplay of molecular and colloidal scales controls drying of microgel dispersions.
    Roger K; Crassous JJ
    Proc Natl Acad Sci U S A; 2021 Nov; 118(46):. PubMed ID: 34750256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drying paint: from micro-scale dynamics to mechanical instabilities.
    Goehring L; Li J; Kiatkirakajorn PC
    Philos Trans A Math Phys Eng Sci; 2017 May; 375(2093):. PubMed ID: 28373384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces.
    Amundsen DS; Trømborg JK; Thøgersen K; Katzav E; Malthe-Sørenssen A; Scheibert J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032406. PubMed ID: 26465481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of particle shape anisotropy on crack formation in drying of colloidal suspension.
    Dugyala VR; Lama H; Satapathy DK; Basavaraj MG
    Sci Rep; 2016 Aug; 6():30708. PubMed ID: 27477261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear banding in drying films of colloidal nanoparticles.
    Yang B; Sharp JS; Smith MI
    ACS Nano; 2015 Apr; 9(4):4077-84. PubMed ID: 25825797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of drying colloidal suspensions, measured by optical coherence tomography.
    Abe K; Atkinson PS; Cheung CS; Liang H; Goehring L; Inasawa S
    Soft Matter; 2024 Mar; 20(10):2381-2393. PubMed ID: 38376422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface patterns in drying films of silica colloidal dispersions.
    Boulogne F; Giorgiutti-Dauphiné F; Pauchard L
    Soft Matter; 2015 Jan; 11(1):102-8. PubMed ID: 25371102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile strategy to colloidal crystals by drying condensed suspension droplets.
    Zhou C; Han J; Guo R
    J Colloid Interface Sci; 2013 May; 397():80-7. PubMed ID: 23484771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.