These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29035806)

  • 61. Reduced chemically modified graphene oxide for supercapacitor electrode.
    Rajagopalan B; Chung JS
    Nanoscale Res Lett; 2014; 9(1):535. PubMed ID: 25298756
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites.
    Jana M; Saha S; Samanta P; Murmu NC; Kim NH; Kuila T; Lee JH
    Nanotechnology; 2015 Feb; 26(7):075402. PubMed ID: 25642986
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon.
    Yu C; Yang J; Zhao C; Fan X; Wang G; Qiu J
    Nanoscale; 2014 Mar; 6(6):3097-104. PubMed ID: 24362881
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Graphene decorated with MoS2 nanosheets: a synergetic energy storage composite electrode for supercapacitor applications.
    Thangappan R; Kalaiselvam S; Elayaperumal A; Jayavel R; Arivanandhan M; Karthikeyan R; Hayakawa Y
    Dalton Trans; 2016 Feb; 45(6):2637-46. PubMed ID: 26732466
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material.
    Jana M; Khanra P; Murmu NC; Samanta P; Lee JH; Kuila T
    Phys Chem Chem Phys; 2014 Apr; 16(16):7618-26. PubMed ID: 24643242
    [TBL] [Abstract][Full Text] [Related]  

  • 66. ZIF-67 MOF-Derived Mn
    Seliem AF; Mohammed AYA; Attia A; Aman S; Ahmad N; Ibrahim MM
    ACS Omega; 2024 Apr; 9(15):17563-17576. PubMed ID: 38645369
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Preparation of layered graphene and tungsten oxide hybrids for enhanced performance supercapacitors.
    Xing LL; Huang KJ; Fang LX
    Dalton Trans; 2016 Nov; 45(43):17439-17446. PubMed ID: 27735015
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors.
    Lin M; Chen B; Wu X; Qian J; Fei L; Lu W; Chan LW; Yuan J
    Nanoscale; 2016 Jan; 8(4):1854-60. PubMed ID: 26726127
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fabrication of Polyaniline/Graphene/Polyester Textile Electrode Materials for Flexible Supercapacitors with High Capacitance and Cycling Stability.
    Shao F; Bian SW; Zhu Q; Guo MX; Liu S; Peng YH
    Chem Asian J; 2016 Jul; 11(13):1906-12. PubMed ID: 27156174
    [TBL] [Abstract][Full Text] [Related]  

  • 70. ZnO and reduced graphene oxide electrodes for all-in-one supercapacitor devices.
    Buldu-Akturk M; Toufani M; Tufani A; Erdem E
    Nanoscale; 2022 Feb; 14(8):3269-3278. PubMed ID: 35166280
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Porous Graphene Oxide Prepared on Nickel Foam by Electrophoretic Deposition and Thermal Reduction as High-Performance Supercapacitor Electrodes.
    Xu Y; Li J; Huang W
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28800098
    [TBL] [Abstract][Full Text] [Related]  

  • 72. NiCo2S4 nanoparticles anchored on reduced graphene oxide sheets: In-situ synthesis and enhanced capacitive performance.
    Li Z; Ji X; Han J; Hu Y; Guo R
    J Colloid Interface Sci; 2016 Sep; 477():46-53. PubMed ID: 27240243
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Low-temperature solution-processable Ni(OH)2 ultrathin nanosheet/N-graphene nanohybrids for high-performance supercapacitor electrodes.
    Chang H; Kang J; Chen L; Wang J; Ohmura K; Chen N; Fujita T; Wu H; Chen M
    Nanoscale; 2014 Jun; 6(11):5960-6. PubMed ID: 24769688
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Indirect transformation of coordination-polymer particles into magnetic carbon-coated MN3O4 (MN3O4@C) nanowires for supercapacitor electrodes with good cycling performance.
    Wang K; Ma X; Zhang Z; Zheng M; Geng Z; Wang Z
    Chemistry; 2013 May; 19(22):7084-9. PubMed ID: 23576400
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Colloidal Processing of Mn
    Yang W; Zhitomirsky I
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269290
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device.
    Saha S; Jana M; Khanra P; Samanta P; Koo H; Murmu NC; Kuila T
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14211-22. PubMed ID: 26068665
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Boosting capacitive performance of manganese oxide nanorods by decorating with three-dimensional crushed graphene.
    Reaz AH; Saha S; Roy CK; Wahab MA; Will G; Amin MA; Yamauchi Y; Liu S; Kaneti YV; Hossain MS; Firoz SH
    Nano Converg; 2022 Feb; 9(1):10. PubMed ID: 35188595
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor.
    Yu P; Li Y; Zhao X; Wu L; Zhang Q
    Langmuir; 2014 May; 30(18):5306-13. PubMed ID: 24761945
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Superior supercapacitor performance of Bi
    Ghosh K; Srivastava SK
    Dalton Trans; 2020 Dec; 49(46):16993-17004. PubMed ID: 33191423
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High electrochemical performance of ink solution based on manganese cobalt sulfide/reduced graphene oxide nano-composites for supercapacitor electrode materials.
    Thanh Tam LT; Tung DT; Nguyet HM; Ngoc Linh NT; Dung NT; Van Quynh N; Van Dang N; Vernardou D; Le TK; Tuan LA; Minh PN; Lu LT
    RSC Adv; 2022 Jul; 12(31):20182-20190. PubMed ID: 35919609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.