BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29035820)

  • 1. Real-time monitoring of amyloid fibrillation by electrical impedance spectroscopy.
    da Silva RR; de Lima SV; de Oliveira HP; de Melo CP; Frías IAM; Oliveira MDL; Andrade CAS
    Colloids Surf B Biointerfaces; 2017 Dec; 160():724-731. PubMed ID: 29035820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Investigation of the kinetics of insulin amyloid fibrils formation].
    Sulatskaia AI; Volova EA; Komissarchik IaIu; Snigirevskaia ES; Maskevich AA; Drobchenko EA; Kuznetsova IM; Turoverov KK
    Tsitologiia; 2013; 55(11):809-14. PubMed ID: 25509136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissection of the deep-blue autofluorescence changes accompanying amyloid fibrillation.
    Tikhonova TN; Rovnyagina NR; Zherebker AY; Sluchanko NN; Rubekina AA; Orekhov AS; Nikolaev EN; Fadeev VV; Uversky VN; Shirshin EA
    Arch Biochem Biophys; 2018 Aug; 651():13-20. PubMed ID: 29803394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-organization pathways and spatial heterogeneity in insulin amyloid fibril formation.
    Foderà V; Cataldo S; Librizzi F; Pignataro B; Spiccia P; Leone M
    J Phys Chem B; 2009 Aug; 113(31):10830-7. PubMed ID: 19588943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label free sensing platform for amyloid fibrils effect on living cells.
    Gheorghiu M; David S; Polonschii C; Olaru A; Gaspar S; Bajenaru O; Popescu BO; Gheorghiu E
    Biosens Bioelectron; 2014 Feb; 52():89-97. PubMed ID: 24035851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-inhibition of insulin amyloid-like aggregation.
    Ziaunys M; Sneideris T; Smirnovas V
    Phys Chem Chem Phys; 2018 Nov; 20(43):27638-27645. PubMed ID: 30374505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of insulin aggregation: disentanglement of amyloid fibrillation from large-size cluster formation.
    Manno M; Craparo EF; Martorana V; Bulone D; San Biagio PL
    Biophys J; 2006 Jun; 90(12):4585-91. PubMed ID: 16581839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible light-induced insulin aggregation on surfaces via photoexcitation of bound thioflavin T.
    Chouchane K; Pignot-Paintrand I; Bruckert F; Weidenhaupt M
    J Photochem Photobiol B; 2018 Apr; 181():89-97. PubMed ID: 29524850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible Fluorescent Probe for Selective Detection of Amyloid Fibrils.
    Das A; Dutta T; Gadhe L; Koner AL; Saraogi I
    Anal Chem; 2020 Aug; 92(15):10336-10341. PubMed ID: 32635722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A-type dimeric epigallocatechin-3-gallate (EGCG) is a more potent inhibitor against the formation of insulin amyloid fibril than EGCG monomer.
    Nie RZ; Zhu W; Peng JM; Ge ZZ; Li CM
    Biochimie; 2016 Jun; 125():204-12. PubMed ID: 27079519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods.
    Liu R; He M; Su R; Yu Y; Qi W; He Z
    Biochem Biophys Res Commun; 2010 Jan; 391(1):862-7. PubMed ID: 19945428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary nucleation and accessible surface in insulin amyloid fibril formation.
    Foderà V; Librizzi F; Groenning M; van de Weert M; Leone M
    J Phys Chem B; 2008 Mar; 112(12):3853-8. PubMed ID: 18311965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo-induced inhibition of insulin amyloid fibrillation on online laser measurement.
    Liu R; Su R; Qi W; He Z
    Biochem Biophys Res Commun; 2011 Jun; 409(2):229-34. PubMed ID: 21570949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time monitoring of amyloid growth in a rigid gel matrix.
    Dalpadado RC; Maat H; Carver JA; Hall D
    Anal Biochem; 2016 Oct; 511():13-6. PubMed ID: 27477869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human insulin adsorption kinetics, conformational changes and amyloidal aggregate formation on hydrophobic surfaces.
    Nault L; Guo P; Jain B; Bréchet Y; Bruckert F; Weidenhaupt M
    Acta Biomater; 2013 Feb; 9(2):5070-9. PubMed ID: 23022543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy.
    Yao J; Wang L; Liu K; Wu H; Wang H; Huang J; Li J
    Electrophoresis; 2020 Sep; 41(16-17):1425-1432. PubMed ID: 31863489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of electrical impedance spectroscopy as a practical method of investigating the formation of aggregates in aqueous solutions of dyes and surfactants.
    de Oliveira HP; de Melo CP
    J Phys Chem B; 2011 Jun; 115(21):6903-8. PubMed ID: 21545105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crocein Orange G mediated detection and modulation of amyloid fibrillation revealed by surface-enhanced Raman spectroscopy.
    Zhang L; Lian W; Li P; Ma H; Han X; Zhao B; Chen Z
    Biosens Bioelectron; 2020 Jan; 148():111816. PubMed ID: 31678823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent silicon nanoparticles inhibit the amyloid fibrillation of insulin.
    Ma Y; Huang R; Qi W; Su R; He Z
    J Mater Chem B; 2019 Mar; 7(9):1397-1403. PubMed ID: 32255010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the potential of infrared spectroscopy in qualitative and quantitative monitoring of ovalbumin amyloid fibrillation.
    Milošević J; Petrić J; Jovčić B; Janković B; Polović N
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117882. PubMed ID: 31818644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.