These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 29035873)
1. Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms. Samala RK; Chan HP; Hadjiiski LM; Helvie MA; Cha KH; Richter CD Phys Med Biol; 2017 Nov; 62(23):8894-8908. PubMed ID: 29035873 [TBL] [Abstract][Full Text] [Related]
2. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision. Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257 [TBL] [Abstract][Full Text] [Related]
3. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154 [TBL] [Abstract][Full Text] [Related]
4. Digital breast tomosynthesis versus digital mammography: integration of image modalities enhances deep learning-based breast mass classification. Li X; Qin G; He Q; Sun L; Zeng H; He Z; Chen W; Zhen X; Zhou L Eur Radiol; 2020 Feb; 30(2):778-788. PubMed ID: 31691121 [TBL] [Abstract][Full Text] [Related]
5. Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning. Li S; Wei J; Chan HP; Helvie MA; Roubidoux MA; Lu Y; Zhou C; Hadjiiski LM; Samala RK Phys Med Biol; 2018 Jan; 63(2):025005. PubMed ID: 29210358 [TBL] [Abstract][Full Text] [Related]
6. Breast Cancer Diagnosis in Digital Breast Tomosynthesis: Effects of Training Sample Size on Multi-Stage Transfer Learning Using Deep Neural Nets. Samala RK; Heang-Ping Chan ; Hadjiiski L; Helvie MA; Richter CD; Cha KH IEEE Trans Med Imaging; 2019 Mar; 38(3):686-696. PubMed ID: 31622238 [TBL] [Abstract][Full Text] [Related]
7. Generalization error analysis for deep convolutional neural network with transfer learning in breast cancer diagnosis. Samala RK; Chan HP; Hadjiiski LM; Helvie MA; Richter CD Phys Med Biol; 2020 May; 65(10):105002. PubMed ID: 32208369 [TBL] [Abstract][Full Text] [Related]
8. Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. Samala RK; Chan HP; Hadjiiski LM; Helvie MA; Richter C; Cha K Phys Med Biol; 2018 May; 63(9):095005. PubMed ID: 29616660 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Al-Masni MA; Al-Antari MA; Park JM; Gi G; Kim TY; Rivera P; Valarezo E; Choi MT; Han SM; Kim TS Comput Methods Programs Biomed; 2018 Apr; 157():85-94. PubMed ID: 29477437 [TBL] [Abstract][Full Text] [Related]
10. Deep-Learning-Based Semantic Labeling for 2D Mammography and Comparison of Complexity for Machine Learning Tasks. Yi PH; Lin A; Wei J; Yu AC; Sair HI; Hui FK; Hager GD; Harvey SC J Digit Imaging; 2019 Aug; 32(4):565-570. PubMed ID: 31197559 [TBL] [Abstract][Full Text] [Related]
11. Computer-Aided Diagnosis Scheme for Distinguishing Between Benign and Malignant Masses on Breast DCE-MRI Images Using Deep Convolutional Neural Network with Bayesian Optimization. Hizukuri A; Nakayama R; Nara M; Suzuki M; Namba K J Digit Imaging; 2021 Feb; 34(1):116-123. PubMed ID: 33159279 [TBL] [Abstract][Full Text] [Related]
12. Transfer Learning From Convolutional Neural Networks for Computer-Aided Diagnosis: A Comparison of Digital Breast Tomosynthesis and Full-Field Digital Mammography. Mendel K; Li H; Sheth D; Giger M Acad Radiol; 2019 Jun; 26(6):735-743. PubMed ID: 30076083 [TBL] [Abstract][Full Text] [Related]
13. Deep Convolutional Neural Networks for breast cancer screening. Chougrad H; Zouaki H; Alheyane O Comput Methods Programs Biomed; 2018 Apr; 157():19-30. PubMed ID: 29477427 [TBL] [Abstract][Full Text] [Related]
14. Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network. Jung H; Kim B; Lee I; Yoo M; Lee J; Ham S; Woo O; Kang J PLoS One; 2018; 13(9):e0203355. PubMed ID: 30226841 [TBL] [Abstract][Full Text] [Related]
15. Mutual information-based template matching scheme for detection of breast masses: from mammography to digital breast tomosynthesis. Mazurowski MA; Lo JY; Harrawood BP; Tourassi GD J Biomed Inform; 2011 Oct; 44(5):815-23. PubMed ID: 21554985 [TBL] [Abstract][Full Text] [Related]
16. Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network. Alom MZ; Yakopcic C; Nasrin MS; Taha TM; Asari VK J Digit Imaging; 2019 Aug; 32(4):605-617. PubMed ID: 30756265 [TBL] [Abstract][Full Text] [Related]
17. Deep feature-based automatic classification of mammograms. Arora R; Rai PK; Raman B Med Biol Eng Comput; 2020 Jun; 58(6):1199-1211. PubMed ID: 32200453 [TBL] [Abstract][Full Text] [Related]
18. Deep convolutional neural networks for mammography: advances, challenges and applications. Abdelhafiz D; Yang C; Ammar R; Nabavi S BMC Bioinformatics; 2019 Jun; 20(Suppl 11):281. PubMed ID: 31167642 [TBL] [Abstract][Full Text] [Related]
19. Risks of feature leakage and sample size dependencies in deep feature extraction for breast mass classification. Samala RK; Chan HP; Hadjiiski L; Helvie MA Med Phys; 2021 Jun; 48(6):2827-2837. PubMed ID: 33368376 [TBL] [Abstract][Full Text] [Related]
20. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. Nishio M; Sugiyama O; Yakami M; Ueno S; Kubo T; Kuroda T; Togashi K PLoS One; 2018; 13(7):e0200721. PubMed ID: 30052644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]