These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29036130)

  • 1. Electromagnetic diffraction theory of refractive axicon lenses.
    Wang Y; Yan S; Friberg AT; Kuebel D; Visser TD
    J Opt Soc Am A Opt Image Sci Vis; 2017 Jul; 34(7):1201-1211. PubMed ID: 29036130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation.
    Glytsis EN; Harrigan ME; Hirayama K; Gaylord TK
    Appl Opt; 1998 Jan; 37(1):34-43. PubMed ID: 18268557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rigorous electromagnetic analysis of two dimensional micro-axicon by boundary integral equations.
    Lin J; Tan J; Liu J; Liu S
    Opt Express; 2009 Feb; 17(3):1466-71. PubMed ID: 19188975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a refractive linear axicon with distant depth of field and no central blocking.
    Chebbi B; Golub I; Breygin P
    Appl Opt; 2013 Dec; 52(35):8572-5. PubMed ID: 24513903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scattering of an electromagnetic plane wave by a Luneburg lens. II. Wave theory.
    Lock JA
    J Opt Soc Am A Opt Image Sci Vis; 2008 Dec; 25(12):2980-90. PubMed ID: 19037389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrical optics approximation for plane-wave scattering by a rectangular groove on a surface.
    Cao Z; Cui F; Xian F; Li J; Pei S
    Appl Opt; 2020 Mar; 59(8):2600-2605. PubMed ID: 32225803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limits of scalar diffraction theory for conducting gratings.
    Gremaux DA; Gallagher NC
    Appl Opt; 1993 Apr; 32(11):1948-53. PubMed ID: 20820328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Far-zone polarization distribution properties of partially coherent beams with non-uniform source polarization distributions in turbulent atmosphere.
    Zhang R; Wang X; Cheng X
    Opt Express; 2012 Jan; 20(2):1421-35. PubMed ID: 22274486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beam shaping in the nonparaxial domain of diffractive optics.
    Kuittinen M; Vahimaa P; Honkanen M; Turunen J
    Appl Opt; 1997 Apr; 36(10):2034-41. PubMed ID: 18253170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband wave packet dynamics of minimally diffractive ultrasonic fields from axicon and stepped fraxicon lenses.
    Lirette R; Mobley J
    J Acoust Soc Am; 2019 Jul; 146(1):103. PubMed ID: 31370603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of focal-shift effect in planar metallic nanoslit lenses.
    Gao Y; Liu J; Zhang X; Wang Y; Song Y; Liu S; Zhang Y
    Opt Express; 2012 Jan; 20(2):1320-9. PubMed ID: 22274477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Randomly Multiplexed Diffractive Lens and Axicon for Spatial and Spectral Imaging.
    Anand V; Katkus T; Juodkazis S
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32326337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of spectacle and contact lenses on the effective corneal refractive zone.
    Harris WF
    Clin Exp Optom; 2009 Mar; 92(2):99-103. PubMed ID: 19278459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a refractive logarithmic axicon.
    Golub I; Chebbi B; Shaw D; Nowacki D
    Opt Lett; 2010 Aug; 35(16):2828-30. PubMed ID: 20717471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of sub wavelength super-long dark channel using high NA lens axicon.
    Lalithambigai K; Suresh P; Ravi V; Prabakaran K; Jaroszewicz Z; Rajesh KB; Anbarasan PM; Pillai TV
    Opt Lett; 2012 Mar; 37(6):999-1001. PubMed ID: 22446203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase matrix and cross sections for single scattering by circular cylinders: a comparison of ray optics and wave theory.
    Takano Y; Tanaka M
    Appl Opt; 1980 Aug; 19(16):2781-800. PubMed ID: 20234508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rigorous electromagnetic test of super-oscillatory lens.
    Liu T; Wang T; Yang S; Sun L; Jiang Z
    Opt Express; 2015 Dec; 23(25):32139-48. PubMed ID: 26699004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4π-spherically focused electromagnetic wave: diffraction optics approach and high-power limits.
    Jeong TM; Bulanov SV; Sasorov PV; Bulanov SS; Koga JK; Korn G
    Opt Express; 2020 Apr; 28(9):13991-14006. PubMed ID: 32403863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavefronts, caustic, and intensity of a plane wave refracted by an arbitrary surface: the axicon and the plano spherical lenses.
    Ortega-Vidals P; de Jesús Cabrera-Rosas O; Espíndola Ramos E; Juárez Reyes SA; Julían Macías I; Silva-Ortigoza G; Silva-Ortigoza R; Sosa-Sánchez CT
    J Opt Soc Am A Opt Image Sci Vis; 2017 Sep; 34(9):1670-1678. PubMed ID: 29036140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffraction of short pulses with boundary diffraction wave theory.
    Horváth ZL; Bor Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026601. PubMed ID: 11308595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.