These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 29036160)
1. On the van Cittert-Zernike theorem for intensity correlations and its applications. Gureyev TE; Kozlov A; Paganin DM; Nesterets YI; De Hoog F; Quiney HM J Opt Soc Am A Opt Image Sci Vis; 2017 Sep; 34(9):1577-1584. PubMed ID: 29036160 [TBL] [Abstract][Full Text] [Related]
2. Vectorial van Cittert-Zernike theorem based on spatial averaging: experimental demonstrations. Singh RK; Naik DN; Itou H; Brundabanam MM; Miyamoto Y; Takeda M Opt Lett; 2013 Nov; 38(22):4809-12. PubMed ID: 24322138 [TBL] [Abstract][Full Text] [Related]
3. Spatial coherence of electron beams from field emitters and its effect on the resolution of imaged objects. Latychevskaia T Ultramicroscopy; 2017 Apr; 175():121-129. PubMed ID: 28236742 [TBL] [Abstract][Full Text] [Related]
4. Single-shot generalized Hanbury Brown-Twiss experiments using a polarization camera for target intensity reconstruction in scattering media. Yoneda N; Quan X; Matoba O Opt Lett; 2023 Feb; 48(3):632-635. PubMed ID: 36723550 [TBL] [Abstract][Full Text] [Related]
5. Generalized van Cittert-Zernike theorem for the cross-spectral density matrix of quasi-homogeneous planar electromagnetic sources. Rodríguez-Herrera OG; Tyo JS J Opt Soc Am A Opt Image Sci Vis; 2012 Sep; 29(9):1939-47. PubMed ID: 23201951 [TBL] [Abstract][Full Text] [Related]
6. The van Cittert-Zernike theorem for electromagnetic fields. Ostrovsky AS; Martínez-Niconoff G; Martínez-Vara P; Olvera-Santamaría MA Opt Express; 2009 Feb; 17(3):1746-52. PubMed ID: 19189004 [TBL] [Abstract][Full Text] [Related]
7. Spatial coherence of bending magnet radiation and application limit of the van Cittert-Zernike theorem. Takayama Y; Kamada S Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):7128-40. PubMed ID: 11969701 [TBL] [Abstract][Full Text] [Related]
8. Quasi-stationary plane-wave optical pulses and the van Cittert-Zernike theorem in time. Lajunen H; Friberg AT; Ostlund P J Opt Soc Am A Opt Image Sci Vis; 2006 Oct; 23(10):2530-7. PubMed ID: 16985538 [TBL] [Abstract][Full Text] [Related]
9. Forward scattering from the sea surface and the van Cittert-Zernike theorem. Dahl PH J Acoust Soc Am; 2004 Feb; 115(2):589-99. PubMed ID: 15000171 [TBL] [Abstract][Full Text] [Related]
10. Van Cittert-Zernike theorem with Stokes parameters. Tervo J; Setälä T; Turunen J; Friberg AT Opt Lett; 2013 Jul; 38(13):2301-3. PubMed ID: 23811909 [TBL] [Abstract][Full Text] [Related]
11. Some consequences of the van Cittert-Zernike theorem for partially polarized stochastic electromagnetic fields. Shirai T Opt Lett; 2009 Dec; 34(23):3761-3. PubMed ID: 19953187 [TBL] [Abstract][Full Text] [Related]
12. Applicability of the Van Cittert-Zernike theorem in a Ronchi shearing interferometer. Liu Y; Tang F; Wang X; Peng C; Li P Appl Opt; 2022 Feb; 61(6):1464-1474. PubMed ID: 35201032 [TBL] [Abstract][Full Text] [Related]
13. Multilocalization and the van Cittert-Zernike theorem. 1. Theory. Comastri SA; Simon JM; Tardin C J Opt Soc Am A Opt Image Sci Vis; 2000 Jul; 17(7):1265-76. PubMed ID: 10883979 [TBL] [Abstract][Full Text] [Related]
14. Fiber coupling efficiency for random light and its applications to lidar. Winzer PJ; Leeb WR Opt Lett; 1998 Jul; 23(13):986-8. PubMed ID: 18087404 [TBL] [Abstract][Full Text] [Related]
15. Hanbury Brown and Twiss interferometry with twisted light. Magaña-Loaiza OS; Mirhosseini M; Cross RM; Rafsanjani SM; Boyd RW Sci Adv; 2016 Apr; 2(4):e1501143. PubMed ID: 27152334 [TBL] [Abstract][Full Text] [Related]
16. Use of the van Cittert-Zernike theorem for partially polarized sources. Gori F; Santarsiero M; Borghi R; Piquero G Opt Lett; 2000 Sep; 25(17):1291-3. PubMed ID: 18066196 [TBL] [Abstract][Full Text] [Related]
17. Partially coherent sources with circular coherence. Santarsiero M; Martínez-Herrero R; Maluenda D; de Sande JC; Piquero G; Gori F Opt Lett; 2017 Apr; 42(8):1512-1515. PubMed ID: 28409785 [TBL] [Abstract][Full Text] [Related]
19. Multilocalization and the van Cittert-Zernike theorem. 2. Application to the Wollaston prism. Simon JM; Comastri SA; Tardin C J Opt Soc Am A Opt Image Sci Vis; 2000 Jul; 17(7):1277-83. PubMed ID: 10883980 [TBL] [Abstract][Full Text] [Related]
20. Van Cittert-Zernike theorem and symmetry properties of the normalized cross-spectral density matrix. Réfrégier P; Roueff A; Wasik V Opt Lett; 2014 Nov; 39(21):6150-3. PubMed ID: 25361301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]