These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 29036168)

  • 1. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action.
    Abadi S; Yan WX; Amar D; Mayrose I
    PLoS Comput Biol; 2017 Oct; 13(10):e1005807. PubMed ID: 29036168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning.
    Muhammad Rafid AH; Toufikuzzaman M; Rahman MS; Rahman MS
    BMC Bioinformatics; 2020 Jun; 21(1):223. PubMed ID: 32487025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-M: Predicting sgRNA off-target effect using a multi-view deep learning network.
    Sun J; Guo J; Liu J
    PLoS Comput Biol; 2024 Mar; 20(3):e1011972. PubMed ID: 38483980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CrnnCrispr: An Interpretable Deep Learning Method for CRISPR/Cas9 sgRNA On-Target Activity Prediction.
    Zhu W; Xie H; Chen Y; Zhang G
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Tools and Resources Supporting CRISPR-Cas Experiments.
    Sledzinski P; Nowaczyk M; Olejniczak M
    Cells; 2020 May; 9(5):. PubMed ID: 32455882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating, modeling and evaluating a large-scale set of CRISPR/Cas9 off-target sites with bulges.
    Yaish O; Orenstein Y
    Nucleic Acids Res; 2024 Jul; 52(12):6777-6790. PubMed ID: 38813823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allele-specific genome targeting in the development of precision medicine.
    Wu J; Tang B; Tang Y
    Theranostics; 2020; 10(7):3118-3137. PubMed ID: 32194858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning improves the ability of sgRNA off-target propensity prediction.
    Liu Q; Cheng X; Liu G; Li B; Liu X
    BMC Bioinformatics; 2020 Feb; 21(1):51. PubMed ID: 32041517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA shape features improve prediction of CRISPR/Cas9 activity.
    Vora DS; Bhandari SM; Sundar D
    Methods; 2024 Jun; 226():120-126. PubMed ID: 38641083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-RNNCrispr: Prediction of CRISPR/Cas9 sgRNA activity using convolutional and recurrent neural networks.
    Zhang G; Dai Z; Dai X
    Comput Struct Biotechnol J; 2020; 18():344-354. PubMed ID: 32123556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in computational and experimental approaches for deciphering transcriptional regulatory networks: Understanding the roles of cis-regulatory elements is essential, and recent research utilizing MPRAs, STARR-seq, CRISPR-Cas9, and machine learning has yielded valuable insights.
    Moeckel C; Mouratidis I; Chantzi N; Uzun Y; Georgakopoulos-Soares I
    Bioessays; 2024 Jul; 46(7):e2300210. PubMed ID: 38715516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-GEM: A Novel Machine Learning Model for CRISPR Genetic Target Discovery and Evaluation.
    Graham JP; Zhang Y; He L; Gonzalez-Fernandez T
    bioRxiv; 2024 Jul; ():. PubMed ID: 39005295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level.
    Yuen G; Khan FJ; Gao S; Stommel JM; Batchelor E; Wu X; Luo J
    Nucleic Acids Res; 2017 Nov; 45(20):12039-12053. PubMed ID: 29036671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into DNA cleavage activation of CRISPR-Cas9 system.
    Huai C; Li G; Yao R; Zhang Y; Cao M; Kong L; Jia C; Yuan H; Chen H; Lu D; Huang Q
    Nat Commun; 2017 Nov; 8(1):1375. PubMed ID: 29123204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A thermostable Cas9 with increased lifetime in human plasma.
    Harrington LB; Paez-Espino D; Staahl BT; Chen JS; Ma E; Kyrpides NC; Doudna JA
    Nat Commun; 2017 Nov; 8(1):1424. PubMed ID: 29127284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.
    Shibata M; Nishimasu H; Kodera N; Hirano S; Ando T; Uchihashi T; Nureki O
    Nat Commun; 2017 Nov; 8(1):1430. PubMed ID: 29127285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rescue of high-specificity Cas9 variants using sgRNAs with matched 5' nucleotides.
    Kim S; Bae T; Hwang J; Kim JS
    Genome Biol; 2017 Nov; 18(1):218. PubMed ID: 29141659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPRi is not strand-specific at all loci and redefines the transcriptional landscape.
    Howe FS; Russell A; Lamstaes AR; El-Sagheer A; Nair A; Brown T; Mellor J
    Elife; 2017 Oct; 6():. PubMed ID: 29058669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors.
    Tak YE; Kleinstiver BP; Nuñez JK; Hsu JY; Horng JE; Gong J; Weissman JS; Joung JK
    Nat Methods; 2017 Dec; 14(12):1163-1166. PubMed ID: 29083402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-CRISPRdb: a comprehensive online resource for anti-CRISPR proteins.
    Dong C; Hao GF; Hua HL; Liu S; Labena AA; Chai G; Huang J; Rao N; Guo FB
    Nucleic Acids Res; 2018 Jan; 46(D1):D393-D398. PubMed ID: 29036676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.