These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1745 related articles for article (PubMed ID: 29036318)
1. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data. Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318 [TBL] [Abstract][Full Text] [Related]
2. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies. Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541 [TBL] [Abstract][Full Text] [Related]
3. Random forest based similarity learning for single cell RNA sequencing data. Pouyan MB; Kostka D Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006 [TBL] [Abstract][Full Text] [Related]
4. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data. Chen S; Hua K; Cui H; Jiang R BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382 [TBL] [Abstract][Full Text] [Related]
5. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
6. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge. Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988 [TBL] [Abstract][Full Text] [Related]
7. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa. Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593 [TBL] [Abstract][Full Text] [Related]
8. EDClust: an EM-MM hybrid method for cell clustering in multiple-subject single-cell RNA sequencing. Wei X; Li Z; Ji H; Wu H Bioinformatics; 2022 May; 38(10):2692-2699. PubMed ID: 35561178 [TBL] [Abstract][Full Text] [Related]
9. scDAC: deep adaptive clustering of single-cell transcriptomic data with coupled autoencoder and Dirichlet process mixture model. An S; Shi J; Liu R; Chen Y; Wang J; Hu S; Xia X; Dong G; Bo X; He Z; Ying X Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38603616 [TBL] [Abstract][Full Text] [Related]
10. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Petegrosso R; Li Z; Kuang R Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426 [TBL] [Abstract][Full Text] [Related]
11. Data Analysis in Single-Cell Transcriptome Sequencing. Gao S Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451 [TBL] [Abstract][Full Text] [Related]
13. Dimension Reduction and Clustering Models for Single-Cell RNA Sequencing Data: A Comparative Study. Feng C; Liu S; Zhang H; Guan R; Li D; Zhou F; Liang Y; Feng X Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32235704 [TBL] [Abstract][Full Text] [Related]
14. SAME-clustering: Single-cell Aggregated Clustering via Mixture Model Ensemble. Huh R; Yang Y; Jiang Y; Shen Y; Li Y Nucleic Acids Res; 2020 Jan; 48(1):86-95. PubMed ID: 31777938 [TBL] [Abstract][Full Text] [Related]
15. BREM-SC: a bayesian random effects mixture model for joint clustering single cell multi-omics data. Wang X; Sun Z; Zhang Y; Xu Z; Xin H; Huang H; Duerr RH; Chen K; Ding Y; Chen W Nucleic Acids Res; 2020 Jun; 48(11):5814-5824. PubMed ID: 32379315 [TBL] [Abstract][Full Text] [Related]
16. BASIC: BCR assembly from single cells. Canzar S; Neu KE; Tang Q; Wilson PC; Khan AA Bioinformatics; 2017 Feb; 33(3):425-427. PubMed ID: 28172415 [TBL] [Abstract][Full Text] [Related]
17. Attention-based deep clustering method for scRNA-seq cell type identification. Li S; Guo H; Zhang S; Li Y; Li M PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464 [TBL] [Abstract][Full Text] [Related]
18. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud. Yang A; Troup M; Lin P; Ho JW Bioinformatics; 2017 Mar; 33(5):767-769. PubMed ID: 28025200 [TBL] [Abstract][Full Text] [Related]
19. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data. Cheng Y; Ma X Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138 [TBL] [Abstract][Full Text] [Related]
20. Clustering Single-Cell RNA Sequence Data Using Information Maximized and Noise-Invariant Representations. Mondal AK; Joshi I; Singh P; Ap P IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(3):1983-1994. PubMed ID: 37015582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]