BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29036440)

  • 1. Analysis and prediction of protein folding energy changes upon mutation by element specific persistent homology.
    Cang Z; Wei GW
    Bioinformatics; 2017 Nov; 33(22):3549-3557. PubMed ID: 29036440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions.
    Cang Z; Wei GW
    PLoS Comput Biol; 2017 Jul; 13(7):e1005690. PubMed ID: 28749969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STRUM: structure-based prediction of protein stability changes upon single-point mutation.
    Quan L; Lv Q; Zhang Y
    Bioinformatics; 2016 Oct; 32(19):2936-46. PubMed ID: 27318206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. INPS: predicting the impact of non-synonymous variations on protein stability from sequence.
    Fariselli P; Martelli PL; Savojardo C; Casadio R
    Bioinformatics; 2015 Sep; 31(17):2816-21. PubMed ID: 25957347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistent homology analysis of protein structure, flexibility, and folding.
    Xia K; Wei GW
    Int J Numer Method Biomed Eng; 2014 Aug; 30(8):814-44. PubMed ID: 24902720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting folding free energy changes upon single point mutations.
    Zhang Z; Wang L; Gao Y; Zhang J; Zhenirovskyy M; Alexov E
    Bioinformatics; 2012 Mar; 28(5):664-71. PubMed ID: 22238268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TopP-S: Persistent homology-based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility.
    Wu K; Zhao Z; Wang R; Wei GW
    J Comput Chem; 2018 Jul; 39(20):1444-1454. PubMed ID: 29633287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Toxicity Prediction Using Topology Based Multitask Deep Neural Networks.
    Wu K; Wei GW
    J Chem Inf Model; 2018 Feb; 58(2):520-531. PubMed ID: 29314829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Best templates outperform homology models in predicting the impact of mutations on protein stability.
    Pak MA; Ivankov DN
    Bioinformatics; 2022 Sep; 38(18):4312-4320. PubMed ID: 35894930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NeEMO: a method using residue interaction networks to improve prediction of protein stability upon mutation.
    Giollo M; Martin AJ; Walsh I; Ferrari C; Tosatto SC
    BMC Genomics; 2014; 15 Suppl 4(Suppl 4):S7. PubMed ID: 25057121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SCooP: an accurate and fast predictor of protein stability curves as a function of temperature.
    Pucci F; Kwasigroch JM; Rooman M
    Bioinformatics; 2017 Nov; 33(21):3415-3422. PubMed ID: 29036273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0.
    Dehouck Y; Grosfils A; Folch B; Gilis D; Bogaerts P; Rooman M
    Bioinformatics; 2009 Oct; 25(19):2537-43. PubMed ID: 19654118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein stability: a single recorded mutation aids in predicting the effects of other mutations in the same amino acid site.
    Wainreb G; Wolf L; Ashkenazy H; Dehouck Y; Ben-Tal N
    Bioinformatics; 2011 Dec; 27(23):3286-92. PubMed ID: 21998155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter.
    Yang J; Jin QY; Zhang B; Shen HB
    Bioinformatics; 2016 Aug; 32(16):2435-43. PubMed ID: 27153618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Prediction of Protein Thermodynamic Stability Changes upon Residue Mutation using Free Energy Perturbation.
    Scarabelli G; Oloo EO; Maier JKX; Rodriguez-Granillo A
    J Mol Biol; 2022 Jan; 434(2):167375. PubMed ID: 34826524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational tools help improve protein stability but with a solubility tradeoff.
    Broom A; Jacobi Z; Trainor K; Meiering EM
    J Biol Chem; 2017 Sep; 292(35):14349-14361. PubMed ID: 28710274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ensemble approach to protein fold classification by integration of template-based assignment and support vector machine classifier.
    Xia J; Peng Z; Qi D; Mu H; Yang J
    Bioinformatics; 2017 Mar; 33(6):863-870. PubMed ID: 28039166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SeqRate: sequence-based protein folding type classification and rates prediction.
    Lin GN; Wang Z; Xu D; Cheng J
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S1. PubMed ID: 20438647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.