These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 29036441)
1. The role of the ER stress-response protein PERK in rhodopsin retinitis pigmentosa. Athanasiou D; Aguila M; Bellingham J; Kanuga N; Adamson P; Cheetham ME Hum Mol Genet; 2017 Dec; 26(24):4896-4905. PubMed ID: 29036441 [TBL] [Abstract][Full Text] [Related]
2. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa. Parfitt DA; Aguila M; McCulley CH; Bevilacqua D; Mendes HF; Athanasiou D; Novoselov SS; Kanuga N; Munro PM; Coffey PJ; Kalmar B; Greensmith L; Cheetham ME Cell Death Dis; 2014 May; 5(5):e1236. PubMed ID: 24853414 [TBL] [Abstract][Full Text] [Related]
3. Selective activation of ATF6 and PERK endoplasmic reticulum stress signaling pathways prevent mutant rhodopsin accumulation. Chiang WC; Hiramatsu N; Messah C; Kroeger H; Lin JH Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):7159-66. PubMed ID: 22956602 [TBL] [Abstract][Full Text] [Related]
4. Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Gorbatyuk MS; Knox T; LaVail MM; Gorbatyuk OS; Noorwez SM; Hauswirth WW; Lin JH; Muzyczka N; Lewin AS Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5961-6. PubMed ID: 20231467 [TBL] [Abstract][Full Text] [Related]
5. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. Tam BM; Moritz OL J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341 [TBL] [Abstract][Full Text] [Related]
6. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. Sakami S; Maeda T; Bereta G; Okano K; Golczak M; Sumaroka A; Roman AJ; Cideciyan AV; Jacobson SG; Palczewski K J Biol Chem; 2011 Mar; 286(12):10551-67. PubMed ID: 21224384 [TBL] [Abstract][Full Text] [Related]
8. Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa. Mendes HF; Cheetham ME Hum Mol Genet; 2008 Oct; 17(19):3043-54. PubMed ID: 18635576 [TBL] [Abstract][Full Text] [Related]
9. Limited ATF4 Expression in Degenerating Retinas with Ongoing ER Stress Promotes Photoreceptor Survival in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa. Bhootada Y; Kotla P; Zolotukhin S; Gorbatyuk O; Bebok Z; Athar M; Gorbatyuk M PLoS One; 2016; 11(5):e0154779. PubMed ID: 27144303 [TBL] [Abstract][Full Text] [Related]
10. Shifting the balance of autophagy and proteasome activation reduces proteotoxic cell death: a novel therapeutic approach for restoring photoreceptor homeostasis. Qiu Y; Yao J; Jia L; Thompson DA; Zacks DN Cell Death Dis; 2019 Jul; 10(8):547. PubMed ID: 31320609 [TBL] [Abstract][Full Text] [Related]
11. The effects of IRE1, ATF6, and PERK signaling on adRP-linked rhodopsins. Jerry Chiang WC; Lin JH Adv Exp Med Biol; 2014; 801():661-7. PubMed ID: 24664756 [TBL] [Abstract][Full Text] [Related]
12. Retinal metabolic state of the proline-23-histidine rat model of retinitis pigmentosa. Acosta ML; Shin YS; Ready S; Fletcher EL; Christie DL; Kalloniatis M Am J Physiol Cell Physiol; 2010 Mar; 298(3):C764-74. PubMed ID: 20032515 [TBL] [Abstract][Full Text] [Related]
13. Calpain Activation Is the Major Cause of Cell Death in Photoreceptors Expressing a Rhodopsin Misfolding Mutation. Comitato A; Schiroli D; Montanari M; Marigo V Mol Neurobiol; 2020 Feb; 57(2):589-599. PubMed ID: 31401765 [TBL] [Abstract][Full Text] [Related]
14. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration. Viringipurampeer IA; Gregory-Evans CY; Metcalfe AL; Bashar E; Moritz OL; Gregory-Evans K Mol Neurobiol; 2019 Mar; 56(3):1637-1652. PubMed ID: 29911255 [TBL] [Abstract][Full Text] [Related]
15. Autophagy in Wen RH; Stanar P; Tam B; Moritz OL Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014 [TBL] [Abstract][Full Text] [Related]
16. Pharmacological Inhibition of the VCP/Proteasome Axis Rescues Photoreceptor Degeneration in RHO Sen M; Kutsyr O; Cao B; Bolz S; Arango-Gonzalez B; Ueffing M Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680161 [TBL] [Abstract][Full Text] [Related]
17. ATF6 is required for efficient rhodopsin clearance and retinal homeostasis in the P23H rho retinitis pigmentosa mouse model. Lee EJ; Chan P; Chea L; Kim K; Kaufman RJ; Lin JH Sci Rep; 2021 Aug; 11(1):16356. PubMed ID: 34381136 [TBL] [Abstract][Full Text] [Related]
18. Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila. Griciuc A; Aron L; Roux MJ; Klein R; Giangrande A; Ueffing M PLoS Genet; 2010 Aug; 6(8):. PubMed ID: 20865169 [TBL] [Abstract][Full Text] [Related]
19. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light. Zhang R; Oglesby E; Marsh-Armstrong N Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367 [TBL] [Abstract][Full Text] [Related]
20. Loss of αA or αB-Crystallin Accelerates Photoreceptor Cell Death in a Mouse Model of P23H Autosomal Dominant Retinitis Pigmentosa. Wang T; Yao J; Jia L; Fort PE; Zacks DN Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]