These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 29036552)
1. Using foliar spectral properties to assess the effects of drought on plant water potential. Cotrozzi L; Couture JJ; Cavender-Bares J; Kingdon CC; Fallon B; Pilz G; Pellegrini E; Nali C; Townsend PA Tree Physiol; 2017 Nov; 37(11):1582-1591. PubMed ID: 29036552 [TBL] [Abstract][Full Text] [Related]
2. Spectral Phenotyping of Physiological and Anatomical Leaf Traits Related with Maize Water Status. Cotrozzi L; Peron R; Tuinstra MR; Mickelbart MV; Couture JJ Plant Physiol; 2020 Nov; 184(3):1363-1377. PubMed ID: 32907885 [TBL] [Abstract][Full Text] [Related]
3. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Serbin SP; Singh A; McNeil BE; Kingdon CC; Townsend PA Ecol Appl; 2016; 24(7):1651-69. PubMed ID: 29210229 [TBL] [Abstract][Full Text] [Related]
4. Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes). Ramírez-Valiente JA; Koehler K; Cavender-Bares J Tree Physiol; 2015 May; 35(5):521-34. PubMed ID: 25939867 [TBL] [Abstract][Full Text] [Related]
7. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Vaz M; Pereira JS; Gazarini LC; David TS; David JS; Rodrigues A; Maroco J; Chaves MM Tree Physiol; 2010 Aug; 30(8):946-56. PubMed ID: 20571151 [TBL] [Abstract][Full Text] [Related]
8. Drought and air warming affect the species-specific levels of stress-related foliar metabolites of three oak species on acidic and calcareous soil. Hu B; Simon J; Rennenberg H Tree Physiol; 2013 May; 33(5):489-504. PubMed ID: 23619385 [TBL] [Abstract][Full Text] [Related]
9. The temporal response to drought in a Mediterranean evergreen tree: comparing a regional precipitation gradient and a throughfall exclusion experiment. Martin-Stpaul NK; Limousin JM; Vogt-Schilb H; Rodríguez-Calcerrada J; Rambal S; Longepierre D; Misson L Glob Chang Biol; 2013 Aug; 19(8):2413-26. PubMed ID: 23553916 [TBL] [Abstract][Full Text] [Related]
10. Relationship between photochemical reflectance index and leaf ecophysiological and biochemical parameters under two different water statuses: towards a rapid and efficient correction method using real-time measurements. Hmimina G; Dufrêne E; Soudani K Plant Cell Environ; 2014 Feb; 37(2):473-87. PubMed ID: 23906049 [TBL] [Abstract][Full Text] [Related]
11. Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity? Limousin JM; Misson L; Lavoir AV; Martin NK; Rambal S Plant Cell Environ; 2010 May; 33(5):863-75. PubMed ID: 20051039 [TBL] [Abstract][Full Text] [Related]
12. Major diffusion leaks of clamp-on leaf cuvettes still unaccounted: how erroneous are the estimates of Farquhar et al. model parameters? Rodeghiero M; Niinemets U; Cescatti A Plant Cell Environ; 2007 Aug; 30(8):1006-22. PubMed ID: 17617828 [TBL] [Abstract][Full Text] [Related]
13. Foliage response of young central European oaks to air warming, drought and soil type. Günthardt-Goerg MS; Kuster TM; Arend M; Vollenweider P Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():185-97. PubMed ID: 23009690 [TBL] [Abstract][Full Text] [Related]
14. The impact of drought on leaf physiology of Quercus suber L. trees: comparison of an extreme drought event with chronic rainfall reduction. Grant OM; Tronina L; Ramalho JC; Kurz Besson C; Lobo-do-Vale R; Santos Pereira J; Jones HG; Chaves MM J Exp Bot; 2010 Oct; 61(15):4361-71. PubMed ID: 20685731 [TBL] [Abstract][Full Text] [Related]
15. Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest. Sperlich D; Chang CT; Peñuelas J; Gracia C; Sabaté S Tree Physiol; 2015 May; 35(5):501-20. PubMed ID: 25836361 [TBL] [Abstract][Full Text] [Related]
16. [Hyperspectral Analysis and Electrolyte Leakage Inversion of Creeping Bentgrass under Salt Stress]. Xiao GZ; Wu XL; Teng K; Chao YH; Li WT; Han LB Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3630-6. PubMed ID: 30199171 [TBL] [Abstract][Full Text] [Related]
17. Drought responses, phenotypic plasticity and survival of Mediterranean species in two different microclimatic sites. Bongers FJ; Olmo M; Lopez-Iglesias B; Anten NP; Villar R Plant Biol (Stuttg); 2017 May; 19(3):386-395. PubMed ID: 28054449 [TBL] [Abstract][Full Text] [Related]
18. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes. Li MH; Cherubini P; Dobbertin M; Arend M; Xiao WF; Rigling A Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():177-84. PubMed ID: 22583546 [TBL] [Abstract][Full Text] [Related]
19. Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. Malenovský Z; Turnbull JD; Lucieer A; Robinson SA New Phytol; 2015 Oct; 208(2):608-24. PubMed ID: 26083501 [TBL] [Abstract][Full Text] [Related]
20. How reliable are methods to assess xylem vulnerability to cavitation? The issue of 'open vessel' artifact in oaks. Martin-StPaul NK; Longepierre D; Huc R; Delzon S; Burlett R; Joffre R; Rambal S; Cochard H Tree Physiol; 2014 Aug; 34(8):894-905. PubMed ID: 25074860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]