These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29036572)

  • 1. DOSE EFFECT OF THE 33S(n,α) 30SI REACTION IN BNCT USING THE NEW n_TOF-CERN DATA.
    Sabaté-Gilarte M; Praena J; Porras I; Quesada JM;
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):342-345. PubMed ID: 29036572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the (33)S(n,α) cross-section at n_TOF(CERN): Applications to BNCT.
    Sabaté-Gilarte M; Praena J; Porras I; Quesada JM; Mastinu P;
    Rep Pract Oncol Radiother; 2016; 21(2):113-6. PubMed ID: 26933393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (33)S as a cooperative capturer for BNCT.
    Praena J; Sabaté-Gilarte M; Porras I; Esquinas PL; Quesada JM; Mastinu P
    Appl Radiat Isot; 2014 Jun; 88():203-5. PubMed ID: 24491680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring neutron capture therapy with
    López-Casas I; Praena J; Arias de Saavedra F; Sabaté-Gilarte M; Porras I
    Appl Radiat Isot; 2020 Sep; 163():109220. PubMed ID: 32561057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of silicon neutron resonance parameters in the thermal to 1800 keV energy range.
    Derrien H; Leal LC; Guber KH; Larson NM
    Radiat Prot Dosimetry; 2005; 115(1-4):227-31. PubMed ID: 16381717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of neutron radiation dose by the addition of sulphur-33 atoms.
    Porras I
    Phys Med Biol; 2008 Apr; 53(7):L1-9. PubMed ID: 18356577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neutron sensitivity of dosimeters applied to boron neutron capture therapy.
    Raaijmakers CP; Watkins PR; Nottelman EL; Verhagen HW; Jansen JT; Zoetelief J; Mijnheer BJ
    Med Phys; 1996 Sep; 23(9):1581-9. PubMed ID: 8892256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.
    Krstic D; Markovic VM; Jovanovic Z; Milenkovic B; Nikezic D; Atanackovic J
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):269-73. PubMed ID: 24435912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of the TAPIRO BNCT epithermal facility.
    Burn KW; Colli V; Curzio G; d'Errico F; Gambarini G; Rosi G; Scolari L
    Radiat Prot Dosimetry; 2004; 110(1-4):645-9. PubMed ID: 15353724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo model of the Studsvik BNCT clinical beam: description and validation.
    Giusti V; Munck af Rosenschöld PM; Sköld K; Montagnini B; Capala J
    Med Phys; 2003 Dec; 30(12):3107-17. PubMed ID: 14713077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on the performance of an epithermal neutron flux monitor for BNCT.
    Guan X; Manabe M; Tamaki S; Liu S; Sato F; Murata I; Wang T
    Appl Radiat Isot; 2016 Jul; 113():28-32. PubMed ID: 27110926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Neutron Sources and 10B Concentration on Boron Neutron Capture Therapy for Shallow and Deeper Non-small Cell Lung Cancer.
    Yu H; Tang X; Shu D; Liu Y; Geng C; Gong C; Hang S; Chen D
    Health Phys; 2017 Mar; 112(3):258-265. PubMed ID: 28121726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Monte Carlo dosimetry-based evaluation of the 7Li(p,n)7Be reaction near threshold for accelerator boron neutron capture therapy.
    Lee CL; Zhou XL; Kudchadker RJ; Harmon F; Harker YD
    Med Phys; 2000 Jan; 27(1):192-202. PubMed ID: 10659757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simulation study on beam property of
    Tanaka K; Kajimoto T; Sakurai Y; Bengua G; Endo S
    Appl Radiat Isot; 2020 Oct; 164():109227. PubMed ID: 32819498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms.
    Koivunoro H; Seppälä T; Uusi-Simola J; Merimaa K; Kotiluoto P; Serén T; Kortesniemi M; Auterinen I; Savolainen S
    Phys Med Biol; 2010 Jun; 55(12):3515-33. PubMed ID: 20508317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A toolkit for epithermal neutron beam characterisation in BNCT.
    Auterinen I; Serén T; Uusi-Simola J; Kosunen A; Savolainen S
    Radiat Prot Dosimetry; 2004; 110(1-4):587-93. PubMed ID: 15353713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.