These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 29036633)
1. RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection. Girard IJ; Tong C; Becker MG; Mao X; Huang J; de Kievit T; Fernando WGD; Liu S; Belmonte MF J Exp Bot; 2017 Nov; 68(18):5079-5091. PubMed ID: 29036633 [TBL] [Abstract][Full Text] [Related]
2. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Joshi RK; Megha S; Rahman MH; Basu U; Kav NN Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436 [TBL] [Abstract][Full Text] [Related]
4. Identification of QTLs for resistance to sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. Wu J; Cai G; Tu J; Li L; Liu S; Luo X; Zhou L; Fan C; Zhou Y PLoS One; 2013; 8(7):e67740. PubMed ID: 23844081 [TBL] [Abstract][Full Text] [Related]
5. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L. Xie L; Jian H; Dai H; Yang Y; Liu Y; Wei L; Tan M; Li J; Liu L BMC Plant Biol; 2023 Oct; 23(1):479. PubMed ID: 37807039 [TBL] [Abstract][Full Text] [Related]
6. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. Rietz S; Bernsdorff FE; Cai D J Exp Bot; 2012 Sep; 63(15):5507-19. PubMed ID: 22888126 [TBL] [Abstract][Full Text] [Related]
7. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. Cao JY; Xu YP; Cai XZ J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552 [TBL] [Abstract][Full Text] [Related]
8. Differential Alternative Splicing Genes and Isoform Regulation Networks of Rapeseed ( Ma JQ; Xu W; Xu F; Lin A; Sun W; Jiang HH; Lu K; Li JN; Wei LJ Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32668742 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Wei L; Jian H; Lu K; Filardo F; Yin N; Liu L; Qu C; Li W; Du H; Li J Plant Biotechnol J; 2016 Jun; 14(6):1368-80. PubMed ID: 26563848 [TBL] [Abstract][Full Text] [Related]
10. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks. Duke KA; Becker MG; Girard IJ; Millar JL; Dilantha Fernando WG; Belmonte MF; de Kievit TR BMC Genomics; 2017 Jun; 18(1):467. PubMed ID: 28629321 [TBL] [Abstract][Full Text] [Related]
11. The infection processes of Sclerotinia sclerotiorum in cotyledon tissue of a resistant and a susceptible genotype of Brassica napus. Garg H; Li H; Sivasithamparam K; Kuo J; Barbetti MJ Ann Bot; 2010 Dec; 106(6):897-908. PubMed ID: 20929899 [TBL] [Abstract][Full Text] [Related]
12. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. Seifbarghi S; Borhan MH; Wei Y; Coutu C; Robinson SJ; Hegedus DD BMC Genomics; 2017 Mar; 18(1):266. PubMed ID: 28356071 [TBL] [Abstract][Full Text] [Related]
13. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot. Yajima W; Verma SS; Shah S; Rahman MH; Liang Y; Kav NN N Biotechnol; 2010 Dec; 27(6):816-21. PubMed ID: 20933110 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines. Chittem K; Yajima WR; Goswami RS; Del Río Mendoza LE PLoS One; 2020; 15(3):e0229844. PubMed ID: 32160211 [TBL] [Abstract][Full Text] [Related]
16. Attack modes and defence reactions in pathosystems involving Sclerotinia sclerotiorum, Brassica carinata, B. juncea and B. napus. Uloth MB; Clode PL; You MP; Barbetti MJ Ann Bot; 2016 Jan; 117(1):79-95. PubMed ID: 26420204 [TBL] [Abstract][Full Text] [Related]
17. fIdentification of B. napus small RNAs responsive to infection by a necrotrophic pathogen. Regmi R; Newman TE; Kamphuis LG; Derbyshire MC BMC Plant Biol; 2021 Aug; 21(1):366. PubMed ID: 34380425 [TBL] [Abstract][Full Text] [Related]
18. Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum. Zhao J; Buchwaldt L; Rimmer SR; Sharpe A; McGregor L; Bekkaoui D; Hegedus D Mol Plant Pathol; 2009 Sep; 10(5):635-49. PubMed ID: 19694954 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of OsPGIP2 confers Sclerotinia sclerotiorum resistance in Brassica napus through increased activation of defense mechanisms. Wang Z; Wan L; Xin Q; Chen Y; Zhang X; Dong F; Hong D; Yang G J Exp Bot; 2018 May; 69(12):3141-3155. PubMed ID: 29648614 [TBL] [Abstract][Full Text] [Related]
20. Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus. Cao Y; Yan X; Ran S; Ralph J; Smith RA; Chen X; Qu C; Li J; Liu L Plant Cell Environ; 2022 Jan; 45(1):248-261. PubMed ID: 34697825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]