These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 29036853)

  • 1. Smooth leader or sharp follower? Playing the mirror game with a robot.
    Kashi S; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):147-159. PubMed ID: 29036853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive training algorithm for robot-assisted upper-arm rehabilitation, applicable to individualised and therapeutic human-robot interaction.
    Chemuturi R; Amirabdollahian F; Dautenhahn K
    J Neuroeng Rehabil; 2013 Sep; 10():102. PubMed ID: 24073670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Gaze Cues in Interpersonal Motor Coordination: Towards Higher Affiliation in Human-Robot Interaction.
    Khoramshahi M; Shukla A; Raffard S; Bardy BG; Billard A
    PLoS One; 2016; 11(6):e0156874. PubMed ID: 27281341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of reaching kinematics during mirror and parallel robot assisted movements.
    Kadivar Z; Sung C; Thompson Z; O'Malley M; Liebschner M; Deng Z
    Stud Health Technol Inform; 2011; 163():247-53. PubMed ID: 21335798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic movement elicits visuomotor priming in children with autism.
    Pierno AC; Mari M; Lusher D; Castiello U
    Neuropsychologia; 2008 Jan; 46(2):448-54. PubMed ID: 17920641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke.
    Secoli R; Milot MH; Rosati G; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2011 Apr; 8():21. PubMed ID: 21513561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay.
    Novak D; Nagle A; Keller U; Riener R
    J Neuroeng Rehabil; 2014 Apr; 11():64. PubMed ID: 24739255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Virtual Player for Joint Improvisation with Humans in the Mirror Game.
    Zhai C; Alderisio F; Słowiński P; Tsaneva-Atanasova K; di Bernardo M
    PLoS One; 2016; 11(4):e0154361. PubMed ID: 27123927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bottom-up, not top-down, modulation of imitation by human and robotic models.
    Press C; Gillmeister H; Heyes C
    Eur J Neurosci; 2006 Oct; 24(8):2415-9. PubMed ID: 17042792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia.
    Andreasen Struijk LNS; Egsgaard LL; Lontis R; Gaihede M; Bentsen B
    J Neuroeng Rehabil; 2017 Nov; 14(1):110. PubMed ID: 29110736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic analysis of motor performance in robot-assisted surgery: a preliminary study.
    Nisky I; Patil S; Hsieh MH; Okamura AM
    Stud Health Technol Inform; 2013; 184():302-8. PubMed ID: 23400175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation by Expert Dancers of a Robot That Performs Partnered Stepping via Haptic Interaction.
    Chen TL; Bhattacharjee T; McKay JL; Borinski JE; Hackney ME; Ting LH; Kemp CC
    PLoS One; 2015; 10(5):e0125179. PubMed ID: 25993099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An interference effect of observed biological movement on action.
    Kilner JM; Paulignan Y; Blakemore SJ
    Curr Biol; 2003 Mar; 13(6):522-5. PubMed ID: 12646137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-frequency modulation of ERD and EEG coherence in robot-assisted hand performance.
    Formaggio E; Storti SF; Boscolo Galazzo I; Gandolfi M; Geroin C; Smania N; Fiaschi A; Manganotti P
    Brain Topogr; 2015 Mar; 28(2):352-63. PubMed ID: 24838817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Muscular Activity and Movement Performance in Robot-Assisted and Freely Performed Exercises.
    Becker S; Bergamo F; Williams S; Disselhorst-Klug C
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):43-50. PubMed ID: 30489270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-based hand motor therapy after stroke.
    Takahashi CD; Der-Yeghiaian L; Le V; Motiwala RR; Cramer SC
    Brain; 2008 Feb; 131(Pt 2):425-37. PubMed ID: 18156154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anthropomorphic brain: the mirror neuron system responds to human and robotic actions.
    Gazzola V; Rizzolatti G; Wicker B; Keysers C
    Neuroimage; 2007 May; 35(4):1674-84. PubMed ID: 17395490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and subjective evaluation of a human-robot object hand-over task.
    Dehais F; Sisbot EA; Alami R; Causse M
    Appl Ergon; 2011 Nov; 42(6):785-91. PubMed ID: 21296335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.