These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 29036919)
1. A Two-Step Bioconversion Process for Canolol Production from Rapeseed Meal Combining an Aspergillus niger Feruloyl Esterase and the Fungus Neolentinus lepideus. Odinot E; Fine F; Sigoillot JC; Navarro D; Laguna O; Bisotto A; Peyronnet C; Ginies C; Lecomte J; Faulds CB; Lomascolo A Microorganisms; 2017 Oct; 5(4):. PubMed ID: 29036919 [TBL] [Abstract][Full Text] [Related]
2. A New Phenolic Acid Decarboxylase from the Brown-Rot Fungus Odinot E; Bisotto-Mignot A; Frezouls T; Bissaro B; Navarro D; Record E; Cadoret F; Doan A; Chevret D; Fine F; Lomascolo A Bioengineering (Basel); 2024 Feb; 11(2):. PubMed ID: 38391667 [TBL] [Abstract][Full Text] [Related]
3. Challenges and advances in biotechnological approaches for the synthesis of canolol and other vinylphenols from biobased p-hydroxycinnamic acids: a review. Lomascolo A; Odinot E; Villeneuve P; Lecomte J Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):173. PubMed ID: 37964324 [TBL] [Abstract][Full Text] [Related]
4. Influence of microwaves treatment of rapeseed on phenolic compounds and canolol content. Yang M; Zheng C; Zhou Q; Liu C; Li W; Huang F J Agric Food Chem; 2014 Feb; 62(8):1956-63. PubMed ID: 24476101 [TBL] [Abstract][Full Text] [Related]
5. Preparation of rapeseed oil with superhigh canolol content and superior quality characteristics by steam explosion pretreatment technology. Yu G; Guo T; Huang Q Food Sci Nutr; 2020 May; 8(5):2271-2278. PubMed ID: 32405384 [TBL] [Abstract][Full Text] [Related]
6. Optimization of Canolol Production from Canola Meal Using Microwave Digestion as a Pre-Treatment Method. Nandasiri R; Fadairo O; Nguyen T; Zago E; Anas MUM; Eskin NAM Foods; 2023 Jan; 12(2):. PubMed ID: 36673413 [TBL] [Abstract][Full Text] [Related]
7. Antioxidative Polyphenols of Canola Meal Extracted by High Pressure: Impact of Temperature and Solvents. Nandasiri R; Eskin NAM; Thiyam-Höllander U J Food Sci; 2019 Nov; 84(11):3117-3128. PubMed ID: 31663155 [TBL] [Abstract][Full Text] [Related]
8. Carrier-bound and carrier-free immobilization of type A feruloyl esterase from Aspergillus niger: Searching for an operationally stable heterogeneous biocatalyst for the synthesis of butyl hydroxycinnamates. Grajales-Hernández DA; Velasco-Lozano S; Armendáriz-Ruiz MA; Rodríguez-González JA; Camacho-Ruíz RM; Asaff-Torres A; López-Gallego F; Mateos-Díaz JC J Biotechnol; 2020 Jun; 316():6-16. PubMed ID: 32305629 [TBL] [Abstract][Full Text] [Related]
9. Identification and Capture of Phenolic Compounds from a Rapeseed Meal Protein Isolate Production Process By-Product by Macroporous Resin and Valorization Their Antioxidant Properties. Le TT; Framboisier X; Aymes A; Ropars A; Frippiat JP; Kapel R Molecules; 2021 Sep; 26(19):. PubMed ID: 34641397 [TBL] [Abstract][Full Text] [Related]
10. Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC. Dilokpimol A; Mäkelä MR; Mansouri S; Belova O; Waterstraat M; Bunzel M; de Vries RP; Hildén KS N Biotechnol; 2017 Jul; 37(Pt B):200-209. PubMed ID: 28285179 [TBL] [Abstract][Full Text] [Related]
11. In situ oxidation of canola meal sinapic acid by horseradish peroxidase (type II) and tyrosinase. Cao X; Liang J; Aluko RE; Thiyam-Holländer U J Food Biochem; 2019 Jun; 43(6):e12884. PubMed ID: 31353609 [TBL] [Abstract][Full Text] [Related]
12. [Cloning of feruloyl esterase gene from Aspergillus niger h408 and high-efficient expression in Pichia pastoris]. Zhou Y; Liu X; Chen J; Hu H; Hou Y Wei Sheng Wu Xue Bao; 2014 Aug; 54(8):876-81. PubMed ID: 25345018 [TBL] [Abstract][Full Text] [Related]
13. Selective Extraction of Sinapic Acid Derivatives from Mustard Seed Meal by Acting on pH: Toward a High Antioxidant Activity Rich Extract. Chadni M; Flourat AL; Reungoat V; Mouterde LMM; Allais F; Ioannou I Molecules; 2021 Jan; 26(1):. PubMed ID: 33401641 [TBL] [Abstract][Full Text] [Related]
14. Rapidoxy® 100: A Solvent-Free Pre-treatment for Production of Canolol. Nandasiri R; Imran A; Thiyam-Holländer U; Eskin NAM Front Nutr; 2021; 8():687851. PubMed ID: 34277685 [TBL] [Abstract][Full Text] [Related]
15. Homologous expression of the feruloyl esterase B gene from Aspergillus niger and characterization of the recombinant enzyme. Levasseur A; Benoit I; Asther M; Asther M; Record E Protein Expr Purif; 2004 Sep; 37(1):126-33. PubMed ID: 15294290 [TBL] [Abstract][Full Text] [Related]
16. A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. Lesage-Meessen L; Delattre M; Haon M; Thibault JF; Ceccaldi BC; Brunerie P; Asther M J Biotechnol; 1996 Oct; 50(2-3):107-13. PubMed ID: 8987621 [TBL] [Abstract][Full Text] [Related]
17. Probing the determinants of substrate specificity of a feruloyl esterase, AnFaeA, from Aspergillus niger. Faulds CB; Molina R; Gonzalez R; Husband F; Juge N; Sanz-Aparicio J; Hermoso JA FEBS J; 2005 Sep; 272(17):4362-71. PubMed ID: 16128806 [TBL] [Abstract][Full Text] [Related]
18. Solid-state fermentation of rapeseed meal with the white-rot fungi trametes versicolor and Pleurotus ostreatus. Żuchowski J; Pecio Ł; Jaszek M; Stochmal A Appl Biochem Biotechnol; 2013 Dec; 171(8):2075-81. PubMed ID: 24022781 [TBL] [Abstract][Full Text] [Related]
19. Heterologous expression of two Aspergillus niger feruloyl esterases in Trichoderma reesei for the production of ferulic acid from wheat bran. Long L; Zhao H; Ding D; Xu M; Ding S Bioprocess Biosyst Eng; 2018 May; 41(5):593-601. PubMed ID: 29349547 [TBL] [Abstract][Full Text] [Related]
20. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus. Okamoto K; Kanawaku R; Masumoto M; Yanase H Enzyme Microb Technol; 2012 Feb; 50(2):96-100. PubMed ID: 22226194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]