These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 29036921)
21. Relative Contributions of Copper Oxide Nanoparticles and Dissolved Copper to Cu Uptake Kinetics of Gulf Killifish (Fundulus grandis) Embryos. Jiang C; Castellon BT; Matson CW; Aiken GR; Hsu-Kim H Environ Sci Technol; 2017 Feb; 51(3):1395-1404. PubMed ID: 28081364 [TBL] [Abstract][Full Text] [Related]
22. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Stankus DP; Lohse SE; Hutchison JE; Nason JA Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562 [TBL] [Abstract][Full Text] [Related]
23. Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Hu JD; Zevi Y; Kou XM; Xiao J; Wang XJ; Jin Y Sci Total Environ; 2010 Jul; 408(16):3477-89. PubMed ID: 20421125 [TBL] [Abstract][Full Text] [Related]
24. Influence of humic acid and dihydroxy benzoic acid on the agglomeration, adsorption, sedimentation and dissolution of copper, manganese, aluminum and silica nanoparticles - A tentative exposure scenario. Pradhan S; Hedberg J; Rosenqvist J; Jonsson CM; Wold S; Blomberg E; Odnevall Wallinder I PLoS One; 2018; 13(2):e0192553. PubMed ID: 29420670 [TBL] [Abstract][Full Text] [Related]
25. Preferential sorption of some natural organic matter fractions to titanium dioxide nanoparticles: influence of pH and ionic strength. Mwaanga P; Carraway ER; Schlautman MA Environ Monit Assess; 2014 Dec; 186(12):8833-44. PubMed ID: 25213564 [TBL] [Abstract][Full Text] [Related]
26. Ion compositions in artificial media control the impact of humic acid on colloidal behaviour, dissolution and speciation of CuO-NP. Fischer J; Gräf T; Sakka Y; Tessarek C; Köser J Sci Total Environ; 2021 Sep; 785():147241. PubMed ID: 33930810 [TBL] [Abstract][Full Text] [Related]
27. Influence of natural organic matter on the transformation of metal and metal oxide nanoparticles and their ecotoxic potency in vitro. Khort A; Brookman-Amissah M; Hedberg J; Chang T; Mei N; Lundberg A; Sturve J; Blomberg E; Odnevall I NanoImpact; 2022 Jan; 25():100386. PubMed ID: 35559892 [TBL] [Abstract][Full Text] [Related]
28. Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Peng C; Duan D; Xu C; Chen Y; Sun L; Zhang H; Yuan X; Zheng L; Yang Y; Yang J; Zhen X; Chen Y; Shi J Environ Pollut; 2015 Feb; 197():99-107. PubMed ID: 25521412 [TBL] [Abstract][Full Text] [Related]
29. Effects of Copper Oxide Nanoparticles on Paddy Soil Properties and Components. Shi J; Ye J; Fang H; Zhang S; Xu C Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30332772 [TBL] [Abstract][Full Text] [Related]
30. Uptake, Distribution, and Transformation of CuO NPs in a Floating Plant Eichhornia crassipes and Related Stomatal Responses. Zhao J; Ren W; Dai Y; Liu L; Wang Z; Yu X; Zhang J; Wang X; Xing B Environ Sci Technol; 2017 Jul; 51(13):7686-7695. PubMed ID: 28586199 [TBL] [Abstract][Full Text] [Related]
31. Influence of nanoparticle doping on the colloidal stability and toxicity of copper oxide nanoparticles in synthetic and natural waters. Adeleye AS; Pokhrel S; Mädler L; Keller AA Water Res; 2018 Apr; 132():12-22. PubMed ID: 29304444 [TBL] [Abstract][Full Text] [Related]
32. Assessment of Cu and CuO nanoparticle ecological responses using laboratory small-scale microcosms. Wu F; Harper BJ; Crandon LE; Harper SL Environ Sci Nano; 2020 Jan; 7(1):105-115. PubMed ID: 32391155 [TBL] [Abstract][Full Text] [Related]
33. The effect of water chemistry on homoaggregations of various nanoparticles: specific role of Cl⁻ ions. Lin D; Ma S; Zhou K; Wu F; Yang K J Colloid Interface Sci; 2015 Jul; 450():272-278. PubMed ID: 25828434 [TBL] [Abstract][Full Text] [Related]
34. Aging of Dissolved Copper and Copper-based Nanoparticles in Five Different Soils: Short-term Kinetics vs. Long-term Fate. Sekine R; Marzouk ER; Khaksar M; Scheckel KG; Stegemeier JP; Lowry GV; Donner E; Lombi E J Environ Qual; 2017 Nov; 46(6):1198-1205. PubMed ID: 29293823 [TBL] [Abstract][Full Text] [Related]
35. Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles. Peng C; Zhang H; Fang H; Xu C; Huang H; Wang Y; Sun L; Yuan X; Chen Y; Shi J Environ Toxicol Chem; 2015 Sep; 34(9):1996-2003. PubMed ID: 25868010 [TBL] [Abstract][Full Text] [Related]
36. Montmorillonite clay and humic acid modulate the behavior of copper oxide nanoparticles in aqueous environment and induces developmental defects in zebrafish embryo. Kansara K; Paruthi A; Misra SK; Karakoti AS; Kumar A Environ Pollut; 2019 Dec; 255(Pt 2):113313. PubMed ID: 31600709 [TBL] [Abstract][Full Text] [Related]
37. Iron Plaque: A Barrier Layer to the Uptake and Translocation of Copper Oxide Nanoparticles by Rice Plants. Peng C; Chen S; Shen C; He M; Zhang Y; Ye J; Liu J; Shi J Environ Sci Technol; 2018 Nov; 52(21):12244-12254. PubMed ID: 30351042 [TBL] [Abstract][Full Text] [Related]
38. Fate and Transformation of CuO Nanoparticles in the Soil-Rice System during the Life Cycle of Rice Plants. Peng C; Xu C; Liu Q; Sun L; Luo Y; Shi J Environ Sci Technol; 2017 May; 51(9):4907-4917. PubMed ID: 28383251 [TBL] [Abstract][Full Text] [Related]
39. Fate of CuO and ZnO nano- and microparticles in the plant environment. Dimkpa CO; Latta DE; McLean JE; Britt DW; Boyanov MI; Anderson AJ Environ Sci Technol; 2013 May; 47(9):4734-42. PubMed ID: 23540424 [TBL] [Abstract][Full Text] [Related]
40. Transformation of copper oxide and copper oxide nanoparticles in the soil and their accumulation by Hordeum sativum. Burachevskaya M; Minkina T; Mandzhieva S; Bauer T; Nevidomskaya D; Shuvaeva V; Sushkova S; Kizilkaya R; Gülser C; Rajput V Environ Geochem Health; 2021 Apr; 43(4):1655-1672. PubMed ID: 33611695 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]