BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 29037049)

  • 21. Recent developments in detection of superoxide radical anion and hydrogen peroxide: Opportunities, challenges, and implications in redox signaling.
    Kalyanaraman B; Hardy M; Podsiadly R; Cheng G; Zielonka J
    Arch Biochem Biophys; 2017 Mar; 617():38-47. PubMed ID: 27590268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications.
    Jiang X; Wang L; Carroll SL; Chen J; Wang MC; Wang J
    Antioxid Redox Signal; 2018 Aug; 29(6):518-540. PubMed ID: 29320869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactive nitrogen species reactivities with nitrones: theoretical and experimental studies.
    Nash KM; Rockenbauer A; Villamena FA
    Chem Res Toxicol; 2012 Aug; 25(8):1581-97. PubMed ID: 22775566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes.
    Dikalov SI; Polienko YF; Kirilyuk I
    Antioxid Redox Signal; 2018 May; 28(15):1433-1443. PubMed ID: 29037084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dual-emission and large Stokes shift fluorescence probe for real-time discrimination of ROS/RNS and imaging in live cells.
    Guo T; Cui L; Shen J; Wang R; Zhu W; Xu Y; Qian X
    Chem Commun (Camb); 2013 Mar; 49(18):1862-4. PubMed ID: 23361498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically important analytes.
    Manjare ST; Kim Y; Churchill DG
    Acc Chem Res; 2014 Oct; 47(10):2985-98. PubMed ID: 25248146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Vivo Electron Paramagnetic Resonance: Radical Concepts for Translation to the Clinical Setting.
    Khramtsov VV
    Antioxid Redox Signal; 2018 May; 28(15):1341-1344. PubMed ID: 29304554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects.
    Wardman P
    Free Radic Biol Med; 2007 Oct; 43(7):995-1022. PubMed ID: 17761297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reliability of ROS and RNS detection in hematopoietic stem cells--potential issues with probes and target cell population.
    Vlaski-Lafarge M; Ivanovic Z
    J Cell Sci; 2015 Nov; 128(21):3849-60. PubMed ID: 26527201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of fluorescence probes for detection of reactive nitrogen species: a review.
    Gomes A; Fernandes E; Lima JL
    J Fluoresc; 2006 Jan; 16(1):119-39. PubMed ID: 16477509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages.
    Wang Y; Noël JM; Velmurugan J; Nogala W; Mirkin MV; Lu C; Guille Collignon M; Lemaître F; Amatore C
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11534-9. PubMed ID: 22615353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurements in vivo of parameters pertinent to ROS/RNS using EPR spectroscopy.
    Khan N; Swartz H
    Mol Cell Biochem; 2002; 234-235(1-2):341-57. PubMed ID: 12162453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanotechnology for Electroanalytical Biosensors of Reactive Oxygen and Nitrogen Species.
    Seenivasan R; Kolodziej C; Karunakaran C; Burda C
    Chem Rec; 2017 Sep; 17(9):886-901. PubMed ID: 28394410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress.
    Geng Y; Wang Z; Zhou J; Zhu M; Liu J; James TD
    Chem Soc Rev; 2023 Jun; 52(11):3873-3926. PubMed ID: 37190785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty.
    Hameister R; Kaur C; Dheen ST; Lohmann CH; Singh G
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2073-2087. PubMed ID: 31898397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Are Hydroethidine-Based Probes Reliable for Reactive Oxygen Species Detection?
    Xiao Y; Meierhofer D
    Antioxid Redox Signal; 2019 Aug; 31(4):359-367. PubMed ID: 29790367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intravital electrochemical nanosensor as a tool for the measurement of reactive oxygen/nitrogen species in liver diseases.
    Abakumova T; Vaneev A; Naumenko V; Shokhina A; Belousov V; Mikaelyan A; Balysheva K; Gorelkin P; Erofeev A; Zatsepin T
    J Nanobiotechnology; 2022 Nov; 20(1):497. PubMed ID: 36424605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescent probes to investigate nitric oxide and other reactive nitrogen species in biology (truncated form: fluorescent probes of reactive nitrogen species).
    McQuade LE; Lippard SJ
    Curr Opin Chem Biol; 2010 Feb; 14(1):43-9. PubMed ID: 19926519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tracking isotopically labeled oxidants using boronate-based redox probes.
    Rios N; Radi R; Kalyanaraman B; Zielonka J
    J Biol Chem; 2020 May; 295(19):6665-6676. PubMed ID: 32217693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems.
    Lippert AR; Van de Bittner GC; Chang CJ
    Acc Chem Res; 2011 Sep; 44(9):793-804. PubMed ID: 21834525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.