These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Binding of pyridoxal 5'-phosphate to the heme protein human cystathionine beta-synthase. Kery V; Poneleit L; Meyer JD; Manning MC; Kraus JP Biochemistry; 1999 Mar; 38(9):2716-24. PubMed ID: 10052942 [TBL] [Abstract][Full Text] [Related]
43. Cross-talk between the catalytic core and the regulatory domain in cystathionine β-synthase: study by differential covalent labeling and computational modeling. Hnízda A; Spiwok V; Jurga V; Kozich V; Kodícek M; Kraus JP Biochemistry; 2010 Dec; 49(49):10526-34. PubMed ID: 21062078 [TBL] [Abstract][Full Text] [Related]
45. Crystal structure of a tandem cystathionine-beta-synthase (CBS) domain protein (TM0935) from Thermotoga maritima at 1.87 A resolution. Miller MD; Schwarzenbacher R; von Delft F; Abdubek P; Ambing E; Biorac T; Brinen LS; Canaves JM; Cambell J; Chiu HJ; Dai X; Deacon AM; DiDonato M; Elsliger MA; Eshagi S; Floyd R; Godzik A; Grittini C; Grzechnik SK; Hampton E; Jaroszewski L; Karlak C; Klock HE; Koesema E; Kovarik JS; Kreusch A; Kuhn P; Lesley SA; Levin I; McMullan D; McPhillips TM; Morse A; Moy K; Ouyang J; Page R; Quijano K; Robb A; Spraggon G; Stevens RC; van den Bedem H; Velasquez J; Vincent J; Wang X; West B; Wolf G; Xu Q; Hodgson KO; Wooley J; Wilson IA Proteins; 2004 Oct; 57(1):213-7. PubMed ID: 15326606 [No Abstract] [Full Text] [Related]
46. Identification and functional analysis of a novel PRKAG2 mutation responsible for Chinese PRKAG2 cardiac syndrome reveal an important role of non-CBS domains in regulating the AMPK pathway. Zhang BL; Xu RL; Zhang J; Zhao XX; Wu H; Ma LP; Hu JQ; Zhang JL; Ye Z; Zheng X; Qin YW J Cardiol; 2013 Oct; 62(4):241-8. PubMed ID: 23778007 [TBL] [Abstract][Full Text] [Related]
47. Coordination chemistry of the heme in cystathionine beta-synthase: formation of iron(II)-isonitrile complexes. Vadon-Le Goff S; Delaforge M; Boucher JL; Janosik M; Kraus JP; Mansuy D Biochem Biophys Res Commun; 2001 May; 283(2):487-92. PubMed ID: 11327727 [TBL] [Abstract][Full Text] [Related]
48. The mycobacterial guaB1 gene encodes a guanosine 5'-monophosphate reductase with a cystathionine-β-synthase domain. Knejzlík Z; Doležal M; Herkommerová K; Clarova K; Klíma M; Dedola M; Zborníková E; Rejman D; Pichová I FEBS J; 2022 Sep; 289(18):5571-5598. PubMed ID: 35338694 [TBL] [Abstract][Full Text] [Related]
49. Trypsin cleavage of human cystathionine beta-synthase into an evolutionarily conserved active core: structural and functional consequences. Kery V; Poneleit L; Kraus JP Arch Biochem Biophys; 1998 Jul; 355(2):222-32. PubMed ID: 9675031 [TBL] [Abstract][Full Text] [Related]
50. Dioxygen reactivity and heme redox potential of truncated human cystathionine beta-synthase. Carballal S; Madzelan P; Zinola CF; Graña M; Radi R; Banerjee R; Alvarez B Biochemistry; 2008 Mar; 47(10):3194-201. PubMed ID: 18278872 [TBL] [Abstract][Full Text] [Related]
51. Cystathionine beta-synthase is coordinately regulated with proliferation through a redox-sensitive mechanism in cultured human cells and Saccharomyces cerevisiae. Maclean KN; Janosík M; Kraus E; Kozich V; Allen RH; Raab BK; Kraus JP J Cell Physiol; 2002 Jul; 192(1):81-92. PubMed ID: 12115739 [TBL] [Abstract][Full Text] [Related]
52. Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel. Yamada T; Krzeminski M; Bozoky Z; Forman-Kay JD; Strange K Biophys J; 2016 Nov; 111(9):1876-1886. PubMed ID: 27806269 [TBL] [Abstract][Full Text] [Related]
53. Allosteric regulation accompanied by oligomeric state changes of Trypanosoma brucei GMP reductase through cystathionine-β-synthase domain. Imamura A; Okada T; Mase H; Otani T; Kobayashi T; Tamura M; Kubata BK; Inoue K; Rambo RP; Uchiyama S; Ishii K; Nishimura S; Inui T Nat Commun; 2020 Apr; 11(1):1837. PubMed ID: 32296055 [TBL] [Abstract][Full Text] [Related]
54. Secondary structure of recombinant human cystathionine beta-synthase in aqueous solution: effect of ligand binding and proteolytic truncation. Dong A; Kery V; Matsuura J; Manning MC; Kraus JP; Carpenter JF Arch Biochem Biophys; 1997 Aug; 344(1):125-32. PubMed ID: 9244389 [TBL] [Abstract][Full Text] [Related]
55. Defective cystathionine beta-synthase regulation by S-adenosylmethionine in a partially pyridoxine responsive homocystinuria patient. Kluijtmans LA; Boers GH; Stevens EM; Renier WO; Kraus JP; Trijbels FJ; van den Heuvel LP; Blom HJ J Clin Invest; 1996 Jul; 98(2):285-9. PubMed ID: 8755636 [TBL] [Abstract][Full Text] [Related]
56. Pharmacological activation and genetic manipulation of cystathionine beta-synthase alter circulating levels of homocysteine and hydrogen sulfide in mice. Jensen KK; Geoghagen NS; Jin L; Holt TG; Luo Q; Malkowitz L; Ni W; Quan S; Waters MG; Zhang A; Zhou HH; Cheng K; Luo MJ Eur J Pharmacol; 2011 Jan; 650(1):86-93. PubMed ID: 20955694 [TBL] [Abstract][Full Text] [Related]
57. The presence of a transsulfuration pathway in the lens: a new oxidative stress defense system. Persa C; Pierce A; Ma Z; Kabil O; Lou MF Exp Eye Res; 2004 Dec; 79(6):875-86. PubMed ID: 15642325 [TBL] [Abstract][Full Text] [Related]
58. IMPDH2 Is an Intracellular Target of the Cyclophilin A and Sanglifehrin A Complex. Pua KH; Stiles DT; Sowa ME; Verdine GL Cell Rep; 2017 Jan; 18(2):432-442. PubMed ID: 28076787 [TBL] [Abstract][Full Text] [Related]