These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29037145)

  • 21. Weighted Transmission Disequilibrium Test for Family Trio Association Design.
    Fang H; Yang Y; Chen L
    Hum Hered; 2018; 83(4):196-209. PubMed ID: 30865952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined linkage and association mapping of quantitative trait Loci with missing completely at random genotype data.
    Fan R; Liu L; Jung J; Zhong M
    Behav Genet; 2008 May; 38(3):316-36. PubMed ID: 18306033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. X-APL: an improved family-based test of association in the presence of linkage for the X chromosome.
    Chung RH; Morris RW; Zhang L; Li YJ; Martin ER
    Am J Hum Genet; 2007 Jan; 80(1):59-68. PubMed ID: 17160894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-chromosome genetic association test incorporating X-chromosome inactivation and imprinting effects.
    Liu W; Wang BQ; Liu-Fu G; Fung WK; Zhou JY
    J Genet; 2019 Nov; 98():. PubMed ID: 31767819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis.
    Aulchenko YS; de Koning DJ; Haley C
    Genetics; 2007 Sep; 177(1):577-85. PubMed ID: 17660554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Method for using complete and incomplete trios to identify genes related to a quantitative trait.
    Kistner EO; Weinberg CR
    Genet Epidemiol; 2004 Jul; 27(1):33-42. PubMed ID: 15185401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An efficient study design to test parent-of-origin effects in family trios.
    Yu X; Chen G; Feng R
    Genet Epidemiol; 2017 Nov; 41(7):587-598. PubMed ID: 28726280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TLINKAGE-IMPRINT: a model-based approach to performing two-locus genetic imprinting analysis.
    Shete S; Zhou X
    Hum Hered; 2006; 62(3):145-56. PubMed ID: 17057404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model-based linkage analysis with imprinting for quantitative traits: ignoring imprinting effects can severely jeopardize detection of linkage.
    Sung YJ; Rao DC
    Genet Epidemiol; 2008 Jul; 32(5):487-96. PubMed ID: 18366130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A powerful parent-of-origin effects test for qualitative traits incorporating control children in nuclear families.
    Zhou JY; Mao WG; Li DL; Hu YQ; Xia F; Fung WK
    J Hum Genet; 2012 Aug; 57(8):500-7. PubMed ID: 22648181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A log-linear approach to case-parent-triad data: assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting.
    Weinberg CR; Wilcox AJ; Lie RT
    Am J Hum Genet; 1998 Apr; 62(4):969-78. PubMed ID: 9529360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties and Evaluation of the MOBIT - a novel Linkage-based Test Statistic and Quantification Method for Imprinting.
    Brugger M; Knapp M; Strauch K
    Stat Appl Genet Mol Biol; 2019 Jul; 18(4):. PubMed ID: 32996465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporating information from markers in LD with test locus for detecting imprinting and maternal effects.
    Zhang F; Lin S
    Eur J Hum Genet; 2020 Aug; 28(8):1087-1097. PubMed ID: 32080366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method for identifying genes related to a quantitative trait, incorporating multiple siblings and missing parents.
    Kistner EO; Weinberg CR
    Genet Epidemiol; 2005 Sep; 29(2):155-65. PubMed ID: 16025442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imprinting detection by extending a regression-based QTL analysis method.
    Gorlova OY; Lei L; Zhu D; Weng SF; Shete S; Zhang Y; Li WD; Price RA; Amos CI
    Hum Genet; 2007 Sep; 122(2):159-74. PubMed ID: 17562082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel approach to detect parent-of-origin effects from pedigree data with application to Beckwith-Wiedemann syndrome.
    Shete S; Elston RC; Lu Y
    Ann Hum Genet; 2007 Nov; 71(Pt 6):804-14. PubMed ID: 17578507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genotype-based association test for general pedigrees: the genotype-PDT.
    Martin ER; Bass MP; Gilbert JR; Pericak-Vance MA; Hauser ER
    Genet Epidemiol; 2003 Nov; 25(3):203-13. PubMed ID: 14557988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization.
    Strauch K; Fimmers R; Kurz T; Deichmann KA; Wienker TF; Baur MP
    Am J Hum Genet; 2000 Jun; 66(6):1945-57. PubMed ID: 10796874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transmission/disequilibrium tests for quantitative traits.
    Zhu X; Elston RC
    Genet Epidemiol; 2001 Jan; 20(1):57-74. PubMed ID: 11119297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A GWAS assessment of the contribution of genomic imprinting to the variation of body mass index in mice.
    Hu Y; Rosa GJ; Gianola D
    BMC Genomics; 2015 Aug; 16(1):576. PubMed ID: 26238105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.