BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29037368)

  • 1. Developing a new individualized 3-node model for evaluating the effects of personal factors on thermal sensation.
    Davoodi F; Hasanzadeh H; Alireza Zolfaghari S; Maerefat M
    J Therm Biol; 2017 Oct; 69():1-12. PubMed ID: 29037368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predication of skin temperature and thermal comfort under two-way transient environments.
    Zhou X; Xiong J; Lian Z
    J Therm Biol; 2017 Dec; 70(Pt A):15-20. PubMed ID: 29074020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.
    Schellen L; Loomans MG; de Wit MH; Olesen BW; van Marken Lichtenbelt WD
    Physiol Behav; 2012 Sep; 107(2):252-61. PubMed ID: 22877870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of overall body thermal sensation based on the thermal response of local cutaneous thermoreceptors.
    Khiavi NM; Maerefat M; Zolfaghari SA
    J Therm Biol; 2019 Jul; 83():187-194. PubMed ID: 31331518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human thermal sensation and comfort in a non-uniform environment with personalized heating.
    Deng Q; Wang R; Li Y; Miao Y; Zhao J
    Sci Total Environ; 2017 Feb; 578():242-248. PubMed ID: 27265737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional differences in temperature sensation and thermal comfort in humans.
    Nakamura M; Yoda T; Crawshaw LI; Yasuhara S; Saito Y; Kasuga M; Nagashima K; Kanosue K
    J Appl Physiol (1985); 2008 Dec; 105(6):1897-906. PubMed ID: 18845785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of the Stolwijk model with regard to clothing, thermal sensation and skin temperature.
    Roelofsen P; Vink P
    Work; 2016 Jul; 54(4):1009-24. PubMed ID: 27447419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal sensations and comfort investigations in transient conditions in tropical office.
    Dahlan ND; Gital YY
    Appl Ergon; 2016 May; 54():169-76. PubMed ID: 26851476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of thermophysiology on thermal behavior: the essentials of categorization.
    Jacquot CM; Schellen L; Kingma BR; van Baak MA; van Marken Lichtenbelt WD
    Physiol Behav; 2014 Apr; 128():180-7. PubMed ID: 24518871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior.
    Katić K; Li R; Zeiler W
    Appl Ergon; 2020 May; 85():103078. PubMed ID: 32174366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new local index for predicting local thermal response of individual body segments.
    Khiavi NM; Maerefat M; Zolfaghari SA
    J Therm Biol; 2018 Dec; 78():161-173. PubMed ID: 30509632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal variations of physiological characteristics and thermal sensation under identical thermal conditions.
    Umemiya N
    J Physiol Anthropol; 2006 Jan; 25(1):29-39. PubMed ID: 16617206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gender differences in thermal sensation and skin temperature sensitivity under local cooling.
    Zhao Q; Lyu J; Du H; Lian Z; Zhao Z
    J Therm Biol; 2023 Jan; 111():103401. PubMed ID: 36585080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold but comfortable? Application of comfort criteria to cold environments.
    Holmér I
    Indoor Air; 2004; 14 Suppl 7():27-31. PubMed ID: 15330768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human thermal sensation algorithm modelization via physiological thermoregulatory responses based on dynamic thermal environment tests on males.
    Li W; Chen J; Lan F
    Comput Methods Programs Biomed; 2022 Dec; 227():107198. PubMed ID: 36323178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the performance of thermal sensation prediction with a biophysical model.
    Schweiker M; Kingma BRM; Wagner A
    Indoor Air; 2017 Sep; 27(5):1012-1021. PubMed ID: 28187232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gender differences in thermal responses to temperature ramps in moderate environments.
    Zhang S; Zhu N
    J Therm Biol; 2022 Jan; 103():103158. PubMed ID: 35027194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local thermal sensation modeling-a review on the necessity and availability of local clothing properties and local metabolic heat production.
    Veselá S; Kingma BR; Frijns AJ
    Indoor Air; 2017 Mar; 27(2):261-272. PubMed ID: 27485255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal responses and perceptions under distinct ambient temperature and wind conditions.
    Shimazaki Y; Yoshida A; Yamamoto T
    J Therm Biol; 2015; 49-50():1-8. PubMed ID: 25774021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of a menthol and ethanol soaked garment on human temperature regulation and perception during exercise and rest in warm, humid conditions.
    Gillis DJ; Barwood MJ; Newton PS; House JR; Tipton MJ
    J Therm Biol; 2016 May; 58():99-105. PubMed ID: 27157339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.