BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2903737)

  • 1. Facile analysis and purification of deblocked N-terminal pyroglutamyl peptides with a strong cation-exchange sulfoethyl aspartamide column.
    Crimmins DL; McCourt DW; Schwartz BD
    Biochem Biophys Res Commun; 1988 Oct; 156(2):910-6. PubMed ID: 2903737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide characterization with a sulfoethyl aspartamide column.
    Crimmins DL; Gorka J; Thoma RS; Schwartz BD
    J Chromatogr; 1988 Jun; 443():63-71. PubMed ID: 2844842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of disulfide-linked homo- and hetero-peptide dimers with a strong cation-exchange sulfoethyl aspartamide column.
    Crimmins DL
    Pept Res; 1989; 2(6):395-401. PubMed ID: 2520779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong-cation-exchange sulfoethyl aspartamide chromatography for peptide mapping of Staphylococcus aureus V8 protein digests.
    Crimmins DL; Thoma RS; McCourt DW; Schwartz BD
    Anal Biochem; 1989 Feb; 176(2):255-60. PubMed ID: 2545105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation-exchange chromatography of peptides on poly(2-sulfoethyl aspartamide)-silica.
    Alpert AJ; Andrews PC
    J Chromatogr; 1988 Jun; 443():85-96. PubMed ID: 2844843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and identification of indigestible pyroglutamyl peptides in an enzymatic hydrolysate of wheat gluten prepared on an industrial scale.
    Higaki-Sato N; Sato K; Esumi Y; Okumura T; Yoshikawa H; Tanaka-Kuwajima C; Kurata A; Kotaru M; Kawabata M; Nakamura Y; Ohtsuki K
    J Agric Food Chem; 2003 Jan; 51(1):8-13. PubMed ID: 12502378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of FAB mass spectrometry and pyroglutamate aminopeptidase digestion for the structure determination of pyroglutamate in modified peptides.
    Kim J; Kim K
    Biochem Mol Biol Int; 1995 Apr; 35(4):803-11. PubMed ID: 7627130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of pyroglutamic acid in peptides.
    Suzuki Y; Motoi H; Sato K
    J Agric Food Chem; 1999 Aug; 47(8):3248-51. PubMed ID: 10552639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyroglutamyl diazomethyl ketone: potent inhibitor of mammalian pyroglutamyl peptide hydrolase.
    Wilk S; Friedman TC; Kline TB
    Biochem Biophys Res Commun; 1985 Jul; 130(2):662-8. PubMed ID: 2862865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversed-phase high-performance liquid chromatography used to monitor enzymatic cleavage of pyrrolidone carboxylic acid from regulatory peptides.
    Dimaline R; Reeve JR
    J Chromatogr; 1983 Mar; 257(2):355-60. PubMed ID: 6133880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prodrugs of peptides. IV: Bioreversible derivatization of the pyroglutamyl group by N-acylation and N-aminomethylation to effect protection against pyroglutamyl aminopeptidase.
    Bundgaard H; Møss J
    J Pharm Sci; 1989 Feb; 78(2):122-6. PubMed ID: 2565975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further characterization of the substrate specificity of a TRH hydrolysing pyroglutamate aminopeptidase from guinea-pig brain.
    Elmore MA; Griffiths EC; O'Connor B; O'Cuinn G
    Neuropeptides; 1990 Jan; 15(1):31-6. PubMed ID: 1970134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolytic cleavage of pyroglutamyl-peptide bond. V. selective removal of pyroglutamic acid from biologically active pyroglutamylpeptides in high concentrations of aqueous methanesulfonic acid.
    Kobayashi J; Ohki K; Okimura K; Hashimoto T; Sakura N
    Chem Pharm Bull (Tokyo); 2006 Jun; 54(6):827-31. PubMed ID: 16755052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presence of a particulate thyrotropin-releasing hormone-degrading pyroglutamate aminopeptidase activity in rat liver.
    Scharfmann R; Morgat JL; Aratan-Spire S
    Neuroendocrinology; 1989 Apr; 49(4):442-8. PubMed ID: 2566131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of pyroglutamyl-phenylalanyl-proline amide by a pyroglutamyl aminopeptidase purified from membrane fractions of bovine brain.
    Kelly JA; Loscher CE; Gallagher S; O'Connor B
    Biochem Soc Trans; 1997 Feb; 25(1):114S. PubMed ID: 9057012
    [No Abstract]   [Full Text] [Related]  

  • 16. 5-Oxoprolinal: transition-state aldehyde inhibitor of pyroglutamyl-peptide hydrolase.
    Friedman TC; Kline TB; Wilk S
    Biochemistry; 1985 Jul; 24(15):3907-13. PubMed ID: 2864952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro digestion of gliadin by gastrointestinal enzymes and by pyrrolidonecarboxylate peptidase.
    Caldwell KA
    Am J Clin Nutr; 1980 Feb; 33(2):293-302. PubMed ID: 6101931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of a serum peptidase hydrolyzing thyroliberin at pyroglutamyl-histidine bone.
    Bauer K; Nowak P; Kleinkauf H
    Eur J Biochem; 1981 Aug; 118(1):173-6. PubMed ID: 6116600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins.
    Skudas R; Grimes BA; Machtejevas E; Kudirkaite V; Kornysova O; Hennessy TP; Lubda D; Unger KK
    J Chromatogr A; 2007 Mar; 1144(1):72-84. PubMed ID: 17084406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of highly charged (+5 to +10) amphipathic α-helical peptide standards by cation-exchange and reversed-phase high-performance liquid chromatography.
    Mant CT; Byars A; Ankarlo S; Jiang Z; Hodges RS
    J Chromatogr A; 2018 Nov; 1574():60-70. PubMed ID: 30220427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.