BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 29037391)

  • 1. Intraspecific geographic variation in thermal limits and acclimatory capacity in a wide distributed endemic frog.
    Barria AM; Bacigalupe LD
    J Therm Biol; 2017 Oct; 69():254-260. PubMed ID: 29037391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal limits along tropical elevational gradients: Poison frog tadpoles show plasticity but maintain divergence across elevation.
    Páez-Vacas MI; Funk WC
    J Therm Biol; 2024 Feb; 120():103815. PubMed ID: 38402728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of climatic variability in shaping intraspecific variation of thermal tolerance in Mediterranean water beetles.
    Pallarés S; Garoffolo D; Rodríguez B; Sánchez-Fernández D
    Insect Sci; 2024 Feb; 31(1):285-298. PubMed ID: 37370260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate variability hypothesis is partially supported in thermal limits of juvenile Northwest Atlantic coastal fishes.
    Strader RN; Dowd SC; Blawas C; Mahoney RD; Patetta NC; Leslie J; Nye JA
    J Fish Biol; 2023 Dec; 103(6):1452-1462. PubMed ID: 37650861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Physiological Plasticity in Response to Cold Acclimation for Nonnative Italian Wall Lizards (
    Haro D; Pauly GB; Liwanag HEM
    Physiol Biochem Zool; 2023; 96(5):356-368. PubMed ID: 37713717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How plastic are upper thermal limits? A comparative study in tsetse (family: Glossinidae) and wider Diptera.
    Weaving H; Terblanche JS; English S
    J Therm Biol; 2023 Dec; 118():103745. PubMed ID: 37924664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis.
    Dewenter BS; Shah AA; Hughes J; Poff NL; Thompson R; Kefford BJ
    Ecol Evol; 2024 Feb; 14(2):e10937. PubMed ID: 38405410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations.
    Ruthsatz K; Dahlke F; Alter K; Wohlrab S; Eterovick PC; Lyra ML; Gippner S; Cooke SJ; Peck MA
    Glob Chang Biol; 2024 May; 30(5):e17318. PubMed ID: 38771091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferred temperature in the warmth of cities: Body size, sex and development stage matter more than urban climate in a ground-dwelling spider.
    Cabon V; Pincebourde S; Colinet H; Dubreuil V; Georges R; Launoy M; Pétillon J; Quénol H; Bergerot B
    J Therm Biol; 2023 Oct; 117():103706. PubMed ID: 37714112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological differences influence the thermal sensitivity of swimming performance in two co-occurring mysid shrimp species with climate change implications.
    Ober GT; Thornber C; Grear J; Kolbe JJ
    J Therm Biol; 2017 Feb; 64():26-34. PubMed ID: 28166942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change.
    Markle TM; Kozak KH
    Ecol Evol; 2018 May; 8(9):4644-4656. PubMed ID: 29760904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum.
    Gaitán-Espitia JD; Belén Arias M; Lardies MA; Nespolo RF
    PLoS One; 2013; 8(8):e70662. PubMed ID: 23940617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal tolerance, acclimatory capacity and vulnerability to global climate change.
    Calosi P; Bilton DT; Spicer JI
    Biol Lett; 2008 Feb; 4(1):99-102. PubMed ID: 17986429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-reversible and Reversible Heat Tolerance Plasticity in Tropical Intertidal Animals: Responding to Habitat Temperature Heterogeneity.
    Brahim A; Mustapha N; Marshall DJ
    Front Physiol; 2018; 9():1909. PubMed ID: 30692933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution climate data reveal an increasing risk of warming-driven activity restriction for diurnal and nocturnal lizards.
    Dufour PC; Tsang TPN; Alston N; De Vos T; Clusella-Trullas S; Bonebrake TC
    Ecol Evol; 2024 May; 14(5):e11316. PubMed ID: 38694757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroecological predictors of evolutionary and plastic potential do not apply at microgeographic scales for a freshwater cladoceran under climate change.
    Nadeau CP; Urban MC
    Evol Lett; 2024 Feb; 8(1):43-55. PubMed ID: 38370540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thyroid hormone levels and temperature during development alter thermal tolerance and energetics of
    Ruthsatz K; Dausmann KH; Peck MA; Drees C; Sabatino NM; Becker LI; Reese J; Hartmann L; Glos J
    Conserv Physiol; 2018; 6(1):coy059. PubMed ID: 30464840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental heterogeneity shapes physiological traits in tropical direct-developing frogs.
    Percino-Daniel R; Contreras López JM; Téllez-Valdés O; Méndez de la Cruz FR; Gonzalez-Voyer A; Piñero D
    Ecol Evol; 2021 Jun; 11(11):6688-6702. PubMed ID: 34141250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal ecological physiology of native and invasive frog species: do invaders perform better?
    Cortes PA; Puschel H; Acuña P; Bartheld JL; Bozinovic F
    Conserv Physiol; 2016; 4(1):cow056. PubMed ID: 27933168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body mass, temperature, and pathogen intensity differentially affect critical thermal maxima and their population-level variation in a solitary bee.
    Jones LJ; Miller DA; Schilder RJ; López-Uribe MM
    Ecol Evol; 2024 Feb; 14(2):e10945. PubMed ID: 38362170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.