These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 29037690)
1. Multi-response modeling of reaction-diffusion to explain alpha-galactoside behavior during the soaking-cooking process in cowpea. Coffigniez F; Briffaz A; Mestres C; Alter P; Durand N; Bohuon P Food Chem; 2018 Mar; 242():279-287. PubMed ID: 29037690 [TBL] [Abstract][Full Text] [Related]
2. Kinetic study of enzymatic α-galactoside hydrolysis in cowpea seeds. Coffigniez F; Briffaz A; Mestres C; Ricci J; Alter P; Durand N; Bohuon P Food Res Int; 2018 Nov; 113():443-451. PubMed ID: 30195540 [TBL] [Abstract][Full Text] [Related]
3. Modelling of the nutritional behaviour of cowpea seeds during soaking, germination and cooking process. Coffigniez F; Briffaz A Food Chem; 2023 Feb; 401():134177. PubMed ID: 36115224 [TBL] [Abstract][Full Text] [Related]
4. Oligosaccharins of black gram (Vigna mungo L.) as affected by processing methods. Girigowda K; Prashanth SJ; Mulimani VH Plant Foods Hum Nutr; 2005 Dec; 60(4):173-80. PubMed ID: 16395628 [TBL] [Abstract][Full Text] [Related]
5. Effect of soaking, cooking and germination on the oligosaccharide content of selected Nigerian legume seeds. Oboh HA; Muzquiz M; Burbano C; Cuadrado C; Pedrosa MM; Ayet G; Osagie AU Plant Foods Hum Nutr; 2000; 55(2):97-110. PubMed ID: 10898479 [TBL] [Abstract][Full Text] [Related]
6. Hydrolysis and diffusion of raffinose oligosaccharides family products in chickpeas, lentils, and beans under different pH and temperature steeping conditions. Avezum L; Ollier L; Siguemoto E; Rajjou L; Mestres C Food Res Int; 2024 Sep; 191():114732. PubMed ID: 39059925 [TBL] [Abstract][Full Text] [Related]
7. Impact of soaking process on the microstructure of cowpea seeds in relation to solid losses and water absorption. Coffigniez F; Briffaz A; Mestres C; Akissoé L; Bohuon P; El Maâtaoui M Food Res Int; 2019 May; 119():268-275. PubMed ID: 30884656 [TBL] [Abstract][Full Text] [Related]
8. Effect of processing on flatus producing oligosaccharides in cowpea (Vigna unguiculata) and the tropical African yam bean (Sphenostylis stenocarpa). Nwinuka NM; Abbey BW; Ayalogu EO Plant Foods Hum Nutr; 1997; 51(3):209-18. PubMed ID: 9629861 [TBL] [Abstract][Full Text] [Related]
9. Reduction of α-galactoside content in red gram (Cajanus cajan L.) upon germination followed by heat treatment. Devindra S; Sreenivasa Rao J; Krishnaswamy P; Bhaskar V J Sci Food Agric; 2011 Aug; 91(10):1829-35. PubMed ID: 21452170 [TBL] [Abstract][Full Text] [Related]
10. Soaking the common bean in a domestic preparation reduced the contents of raffinose-type oligosaccharides but did not interfere with nutritive value. Queiroz Kda S; de Oliveira AC; Helbig E; Reis SM; Carraro F J Nutr Sci Vitaminol (Tokyo); 2002 Aug; 48(4):283-9. PubMed ID: 12489819 [TBL] [Abstract][Full Text] [Related]
11. [The domestic processing of the common bean resulted in a reduction in the phytates and tannins antinutritional factors, in the starch content and in the raffinose, stachiose and verbascose flatulence factors]. de Oliveira AC; Queiroz KS; Helbig E; Reis SM; Carraro F Arch Latinoam Nutr; 2001 Sep; 51(3):276-83. PubMed ID: 11795242 [TBL] [Abstract][Full Text] [Related]
12. Effect of domestic processing on flatus producing factors in ricebean (Vigna umbellata). Kaur M; Kawatra BL Nahrung; 2000 Dec; 44(6):447-50. PubMed ID: 11190844 [TBL] [Abstract][Full Text] [Related]
13. Effects of various water or hydrothermal treatments on certain antinutritional compounds in the seeds of the tribal pulse, Dolichos lablab var. vulgaris L. Vijayakumari K; Siddhuraju P; Janardhanan K Plant Foods Hum Nutr; 1995 Jul; 48(1):17-29. PubMed ID: 8719735 [TBL] [Abstract][Full Text] [Related]
14. Changes due to cooking and sterilization in low molecular weight carbohydrates in immature seeds of five cultivars of common bean. Słupski J; Gębczyński P Int J Food Sci Nutr; 2014 Jun; 65(4):419-25. PubMed ID: 24392956 [TBL] [Abstract][Full Text] [Related]
15. Changes in the carbohydrate composition of legumes after soaking and cooking. Vidal-Valverde C; Frías J; Valverde S J Am Diet Assoc; 1993 May; 93(5):547-50. PubMed ID: 8315164 [TBL] [Abstract][Full Text] [Related]
16. Improved method for the analysis of alpha-galactosides in pea seeds by capillary zone electrophoresis. Comparison with high-performance liquid chromatography-triple-pulsed amperometric detection. Frias J; Price KR; Fenwick GR; Hedley CL; Sørensen H; Vidal-VALverde C J Chromatogr A; 1996 Jan; 719(1):213-9. PubMed ID: 8589830 [TBL] [Abstract][Full Text] [Related]
17. Modelling folates reaction kinetics during cowpea seed germination in comparison with soaking. Coffigniez F; Rychlik M; Mestres C; Striegel L; Bohuon P; Briffaz A Food Chem; 2021 Mar; 340():127960. PubMed ID: 32916403 [TBL] [Abstract][Full Text] [Related]
18. Quantitation of α-galactosides in Rehmannia glutinosa by hydrophilic interaction chromatography-evaporative light scattering detector. Kim TB; Kim SH; Sung SH Phytochem Anal; 2012; 23(6):607-12. PubMed ID: 22473871 [TBL] [Abstract][Full Text] [Related]
19. High-performance capillary electrophoresis with indirect UV detection for determination of alpha-galactosides in Leguminosae and Brassicaceae. Andersen KE; Bjergegaard C; Møller P; Sørensen JC; Sørensen H J Agric Food Chem; 2003 Oct; 51(22):6391-7. PubMed ID: 14558752 [TBL] [Abstract][Full Text] [Related]
20. Compositional variations for alpha-galactosides in different species of leguminosae, brassicaceae, and barley: a chemotaxonomic study based on chemometrics and high-performance capillary electrophoresis. Andersen KE; Bjergegaard C; Møller P; Sørensen JC; Sørensen H J Agric Food Chem; 2005 Jul; 53(14):5809-17. PubMed ID: 15998152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]