BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 29037894)

  • 21. Poroelastic numerical modelling of natural and engineered cartilage based on in vitro tests.
    Boschetti F; Gervaso F; Pennati G; Peretti GM; Vena P; Dubini G
    Biorheology; 2006; 43(3,4):235-47. PubMed ID: 16912397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech; 2000 Dec; 33(12):1533-41. PubMed ID: 11006376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models.
    Li L; Shirazi-Adl A; Buschmann MD
    Biorheology; 2003; 40(1-3):227-33. PubMed ID: 12454409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical study of temperature effects on the poro-viscoelastic behavior of articular cartilage.
    Behrou R; Foroughi H; Haghpanah F
    J Mech Behav Biomed Mater; 2018 Feb; 78():214-223. PubMed ID: 29174620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage.
    Holmes MH; Lai WM; Mow VC
    J Biomech Eng; 1985 Aug; 107(3):206-18. PubMed ID: 4046561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical properties of human articular cartilage under compressive loads.
    Boschetti F; Pennati G; Gervaso F; Peretti GM; Dubini G
    Biorheology; 2004; 41(3-4):159-66. PubMed ID: 15299249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poroelastic response of articular cartilage by nanoindentation creep tests at different characteristic lengths.
    Taffetani M; Gottardi R; Gastaldi D; Raiteri R; Vena P
    Med Eng Phys; 2014 Jul; 36(7):850-8. PubMed ID: 24814573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determining Tension-Compression Nonlinear Mechanical Properties of Articular Cartilage from Indentation Testing.
    Chen X; Zhou Y; Wang L; Santare MH; Wan LQ; Lu XL
    Ann Biomed Eng; 2016 Apr; 44(4):1148-58. PubMed ID: 26240062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical properties of knee articular cartilage.
    Laasanen MS; Töyräs J; Korhonen RK; Rieppo J; Saarakkala S; Nieminen MT; Hirvonen J; Jurvelin JS
    Biorheology; 2003; 40(1-3):133-40. PubMed ID: 12454397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multiscale framework for evaluating three-dimensional cell mechanics in fibril-reinforced poroelastic tissues with anatomical cell distribution - Analysis of chondrocyte deformation behavior in mechanically loaded articular cartilage.
    Tanska P; Venäläinen MS; Erdemir A; Korhonen RK
    J Biomech; 2020 Mar; 101():109648. PubMed ID: 32019679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding.
    Blum MM; Ovaert TC
    J Mech Behav Biomed Mater; 2012 Oct; 14():248-58. PubMed ID: 22947923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contact mechanics for poroelastic, fluid-filled media, with application to cartilage.
    Persson BN
    J Chem Phys; 2016 Dec; 145(23):234703. PubMed ID: 28010105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of Cartilage Poroelastic Material Properties Via Analysis of Loading-Induced Cell Death.
    Kotelsky A; Carrier JS; Buckley MR
    J Biomech Eng; 2024 Aug; 146(8):. PubMed ID: 38530647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs.
    Kim M; Farrell MJ; Steinberg DR; Burdick JA; Mauck RL
    Acta Biomater; 2017 Aug; 58():1-11. PubMed ID: 28629894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structure and mechanical properties of articular cartilage are highly resilient towards transient dehydration.
    Boettcher K; Kienle S; Nachtsheim J; Burgkart R; Hugel T; Lieleg O
    Acta Biomater; 2016 Jan; 29():180-187. PubMed ID: 26432435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elastic, Dynamic Viscoelastic and Model-Derived Fibril-Reinforced Poroelastic Mechanical Properties of Normal and Osteoarthritic Human Femoral Condyle Cartilage.
    Ebrahimi M; Finnilä MAJ; Turkiewicz A; Englund M; Saarakkala S; Korhonen RK; Tanska P
    Ann Biomed Eng; 2021 Sep; 49(9):2622-2634. PubMed ID: 34341898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.