BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 29037894)

  • 41. The generalized triphasic correspondence principle for simultaneous determination of the mechanical properties and proteoglycan content of articular cartilage by indentation.
    Lu XL; Miller C; Chen FH; Guo XE; Mow VC
    J Biomech; 2007; 40(11):2434-41. PubMed ID: 17222852
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Loading and boundary condition influences in a poroelastic finite element model of cartilage stresses in a triaxial compression bioreactor.
    Kallemeyn NA; Grosland NM; Pedersen DR; Martin JA; Brown TD
    Iowa Orthop J; 2006; 26():5-16. PubMed ID: 16789442
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biphasic indentation of articular cartilage--I. Theoretical analysis.
    Mak AF; Lai WM; Mow VC
    J Biomech; 1987; 20(7):703-14. PubMed ID: 3654668
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation.
    Richard F; Villars M; Thibaud S
    J Mech Behav Biomed Mater; 2013 Aug; 24():41-52. PubMed ID: 23684353
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Micromechanical poroelastic and viscoelastic properties of ex-vivo soft tissues.
    Islam MR; Virag J; Oyen ML
    J Biomech; 2020 Dec; 113():110090. PubMed ID: 33176223
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy.
    Darling EM; Zauscher S; Guilak F
    Osteoarthritis Cartilage; 2006 Jun; 14(6):571-9. PubMed ID: 16478668
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of highly inhomogeneous biphasic properties on mechanical behaviour of articular cartilage.
    Lin W; Meng Q; Li J; Chen Z; Jin Z
    Comput Methods Programs Biomed; 2021 Jul; 206():106122. PubMed ID: 33979755
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial and Temporal Mapping of Articular Cartilage Poro-Viscoelastic Material Properties Using Indentation.
    Valluru PKR; Su A; Mehta S; Bajpayee A; Shefelbine S
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36416287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Poroelastography: imaging the poroelastic properties of tissues.
    Konofagou EE; Harrigan TP; Ophir J; Krouskop TA
    Ultrasound Med Biol; 2001 Oct; 27(10):1387-97. PubMed ID: 11731052
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy.
    Stolz M; Raiteri R; Daniels AU; VanLandingham MR; Baschong W; Aebi U
    Biophys J; 2004 May; 86(5):3269-83. PubMed ID: 15111440
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Human temporomandibular joint disc cartilage as a poroelastic material.
    Beek M; Koolstra JH; van Eijden TM
    Clin Biomech (Bristol, Avon); 2003 Jan; 18(1):69-76. PubMed ID: 12527249
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of single-phase isotropic elastic and fibril-reinforced poroelastic models for indentation of rabbit articular cartilage.
    Julkunen P; Harjula T; Marjanen J; Helminen HJ; Jurvelin JS
    J Biomech; 2009 Mar; 42(5):652-6. PubMed ID: 19193381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quasi-linear viscoelastic properties of normal articular cartilage.
    Woo SL; Simon BR; Kuei SC; Akeson WH
    J Biomech Eng; 1980 May; 102(2):85-90. PubMed ID: 7412243
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparison of healthy human and swine articular cartilage dynamic indentation mechanics.
    Ronken S; Arnold MP; Ardura García H; Jeger A; Daniels AU; Wirz D
    Biomech Model Mechanobiol; 2012 May; 11(5):631-9. PubMed ID: 21769620
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of microindentation to characterize the mechanical properties of articular cartilage: comparison of biphasic material properties across length scales.
    Miller GJ; Morgan EF
    Osteoarthritis Cartilage; 2010 Aug; 18(8):1051-7. PubMed ID: 20417292
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational analysis of cartilage implants based on an interpenetrated polymer network for tissue repairing.
    Manzano S; Poveda-Reyes S; Ferrer GG; Ochoa I; Hamdy Doweidar M
    Comput Methods Programs Biomed; 2014 Oct; 116(3):249-59. PubMed ID: 24997064
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage.
    Guilak F
    Biorheology; 2000; 37(1-2):27-44. PubMed ID: 10912176
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of fibril reinforcement in the mechanical behavior of cartilage.
    Li L; Buschmann MD; Shirazi-Adl A
    Biorheology; 2002; 39(1-2):89-96. PubMed ID: 12082271
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Articular cartilage biomechanics: theoretical models, material properties, and biosynthetic response.
    Hasler EM; Herzog W; Wu JZ; Müller W; Wyss U
    Crit Rev Biomed Eng; 1999; 27(6):415-88. PubMed ID: 10952106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.