These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29038453)

  • 1. Cryptogamic stem covers may contribute to nitrous oxide consumption by mature beech trees.
    Machacova K; Maier M; Svobodova K; Lang F; Urban O
    Sci Rep; 2017 Oct; 7(1):13243. PubMed ID: 29038453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves.
    Pihlatie M; Ambus P; Rinne J; Pilegaard K; Vesala T
    New Phytol; 2005 Oct; 168(1):93-8. PubMed ID: 16159324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane emission from stems of European beech (Fagus sylvatica) offsets as much as half of methane oxidation in soil.
    Machacova K; Warlo H; Svobodová K; Agyei T; Uchytilová T; Horáček P; Lang F
    New Phytol; 2023 Apr; 238(2):584-597. PubMed ID: 36631959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tree stem bases are sources of CH
    Welch B; Gauci V; Sayer EJ
    Glob Chang Biol; 2019 Jan; 25(1):361-372. PubMed ID: 30367532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-situ soil greenhouse gas fluxes under different cryptogamic covers in maritime Antarctica.
    Durán J; Rodríguez A; Fangueiro D; De Los Ríos A
    Sci Total Environ; 2021 May; 770():144557. PubMed ID: 33508664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal dynamics of stem N
    Machacova K; Vainio E; Urban O; Pihlatie M
    Nat Commun; 2019 Nov; 10(1):4989. PubMed ID: 31676776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emissions of nitrous oxide and nitric oxide from soils of native and exotic ecosystems of the Amazon and Cerrado regions of Brazil.
    Davidson EA; Bustamante MM; de Siqueira Pinto A
    ScientificWorldJournal; 2001 Nov; 1 Suppl 2():312-9. PubMed ID: 12805795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.
    Baah-Acheamfour M; Carlyle CN; Lim SS; Bork EW; Chang SX
    Sci Total Environ; 2016 Nov; 571():1115-27. PubMed ID: 27450260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and reduction of nitrous oxide in agricultural and forest soils.
    Yu K; Chen G; Struwe S; Kjøller A
    Ying Yong Sheng Tai Xue Bao; 2000 Jun; 11(3):385-9. PubMed ID: 11767638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest.
    Machacova K; Bäck J; Vanhatalo A; Halmeenmäki E; Kolari P; Mammarella I; Pumpanen J; Acosta M; Urban O; Pihlatie M
    Sci Rep; 2016 Mar; 6():23410. PubMed ID: 26997421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated measurements of greenhouse gases fluxes from tree stems and soils: magnitudes, patterns and drivers.
    Barba J; Poyatos R; Vargas R
    Sci Rep; 2019 Mar; 9(1):4005. PubMed ID: 30850622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trees as net sinks for methane (CH
    Machacova K; Borak L; Agyei T; Schindler T; Soosaar K; Mander Ü; Ah-Peng C
    New Phytol; 2021 Feb; 229(4):1983-1994. PubMed ID: 33058184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of phosphorus nutrition, allocation and growth of young beech (Fagus sylvatica L.) trees in P-rich and P-poor forest soil.
    Zavišic A; Polle A
    Tree Physiol; 2018 Jan; 38(1):37-51. PubMed ID: 29182787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil respiration rates and δ13C(CO2) in natural beech forest (Fagus sylvatica L.) in relation to stand structure.
    Cater M; Ogrinc N
    Isotopes Environ Health Stud; 2011 Jun; 47(2):221-37. PubMed ID: 21644135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrous oxide fluxes in three experimental boreal forest reservoirs.
    Hendzel LL; Matthews CJ; Venkiteswaran JJ; St Louis VL; Burton D; Joyce EM; Bodaly RA
    Environ Sci Technol; 2005 Jun; 39(12):4353-60. PubMed ID: 16047767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greenhouse gas budget (CO2, CH4 and N2O) of intensively managed grassland following restoration.
    Merbold L; Eugster W; Stieger J; Zahniser M; Nelson D; Buchmann N
    Glob Chang Biol; 2014 Jun; 20(6):1913-28. PubMed ID: 24395474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the fine root proteome of Fagus sylvatica L. trees associated with P-deficiency and amelioration of P-deficiency.
    Geilfus CM; Carpentier SC; Zavišić A; Polle A
    J Proteomics; 2017 Oct; 169():33-40. PubMed ID: 28625739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of light-felling on non-growing season greenhouse gas emission from soils in Korean pine forests in Maoer Mountains, China.].
    Zhang Y; Mu CC; Liu H; Jing LJ
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2183-2194. PubMed ID: 30039655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate Change Impairs Nitrogen Cycling in European Beech Forests.
    Dannenmann M; Bimüller C; Gschwendtner S; Leberecht M; Tejedor J; Bilela S; Gasche R; Hanewinkel M; Baltensweiler A; Kögel-Knabner I; Polle A; Schloter M; Simon J; Rennenberg H
    PLoS One; 2016; 11(7):e0158823. PubMed ID: 27410969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature change and tree species composition on N2O and NO emissions in acidic forest soils of subtropical China.
    Cheng Y; Wang J; Wang S; Cai Z; Wang L
    J Environ Sci (China); 2014 Mar; 26(3):617-25. PubMed ID: 25079275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.