These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29038490)

  • 1. A doping-less junction-formation mechanism between n-silicon and an atomically thin boron layer.
    Mohammadi V; Nihtianov S; Fang C
    Sci Rep; 2017 Oct; 7(1):13247. PubMed ID: 29038490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Author Correction: A doping-less junction-formation mechanism between n-silicon and an atomically thin boron layer.
    Mohammadi V; Nihtianov S; Fang C
    Sci Rep; 2021 Oct; 11(1):20579. PubMed ID: 34642419
    [No Abstract]   [Full Text] [Related]  

  • 3. Possible boron-rich amorphous silicon borides from ab initio simulations.
    Karacaoğlan AÖÇ; Durandurdu M
    J Mol Model; 2023 Mar; 29(4):92. PubMed ID: 36894735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure of Mo/Si multilayers with B4C diffusion barrier layers.
    Nedelcu I; van de Kruijs RW; Yakshin AE; Bijkerk F
    Appl Opt; 2009 Jan; 48(2):155-60. PubMed ID: 19137023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doping of graphene induced by boron/silicon substrate.
    Dianat A; Liao Z; Gall M; Zhang T; Gutierrez R; Zschech E; Cuniberti G
    Nanotechnology; 2017 May; 28(21):215701. PubMed ID: 28402285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong Depletion in Hybrid Perovskite p-n Junctions Induced by Local Electronic Doping.
    Ou Q; Zhang Y; Wang Z; Yuwono JA; Wang R; Dai Z; Li W; Zheng C; Xu ZQ; Qi X; Duhm S; Medhekar NV; Zhang H; Bao Q
    Adv Mater; 2018 Apr; 30(15):e1705792. PubMed ID: 29493028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active doping of B in silicon nanostructures and development of a Si quantum dot solar cell.
    Hong SH; Kim YS; Lee W; Kim YH; Song JY; Jang JS; Park JH; Choi SH; Kim KJ
    Nanotechnology; 2011 Oct; 22(42):425203. PubMed ID: 21941033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic Monte Carlo simulations of surface growth during plasma deposition of silicon thin films.
    Pandey SC; Singh T; Maroudas D
    J Chem Phys; 2009 Jul; 131(3):034503. PubMed ID: 19624205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Performance Nanostructured Silicon-Organic Quasi p-n Junction Solar Cells via Low-Temperature Deposited Hole and Electron Selective Layer.
    Liu Y; Zhang ZG; Xia Z; Zhang J; Liu Y; Liang F; Li Y; Song T; Yu X; Lee ST; Sun B
    ACS Nano; 2016 Jan; 10(1):704-12. PubMed ID: 26695703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconductivity in doped cubic silicon.
    Bustarret E; Marcenat C; Achatz P; Kacmarcik J; Lévy F; Huxley A; Ortéga L; Bourgeois E; Blase X; Débarre D; Boulmer J
    Nature; 2006 Nov; 444(7118):465-8. PubMed ID: 17122852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface orientation effects in crystalline-amorphous silicon interfaces.
    Nolan M; Legesse M; Fagas G
    Phys Chem Chem Phys; 2012 Nov; 14(43):15173-9. PubMed ID: 23038100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of Silicene Nanosheets on Graphite.
    De Crescenzi M; Berbezier I; Scarselli M; Castrucci P; Abbarchi M; Ronda A; Jardali F; Park J; Vach H
    ACS Nano; 2016 Dec; 10(12):11163-11171. PubMed ID: 28024331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of chemical doping on the lithiation processes of the crystalline Si anode ‒ A first-principles study.
    Chiang HH; Pan LY; Kuo CL
    J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39171711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix.
    Hao XJ; Cho EC; Flynn C; Shen YS; Conibeer G; Green MA
    Nanotechnology; 2008 Oct; 19(42):424019. PubMed ID: 21832679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into the Degradation Mechanisms of Atomic Layer Deposited TiO
    Ros C; Carretero NM; David J; Arbiol J; Andreu T; Morante JR
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29725-29735. PubMed ID: 31347833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomically controlled processing in silicon-based CVD epitaxial growth.
    Murota J; Sakuraba M; Tillack B
    J Nanosci Nanotechnol; 2011 Sep; 11(9):8348-53. PubMed ID: 22097582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraconfined Plasmons in Atomically Thin Crystalline Silver Nanostructures.
    Mkhitaryan V; Weber AP; Abdullah S; Fernández L; Abd El-Fattah ZM; Piquero-Zulaica I; Agarwal H; García Díez K; Schiller F; Ortega JE; García de Abajo FJ
    Adv Mater; 2024 Mar; 36(9):e2302520. PubMed ID: 37924223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic transport in nanometre-scale silicon-on-insulator membranes.
    Zhang P; Tevaarwerk E; Park BN; Savage DE; Celler GK; Knezevic I; Evans PG; Eriksson MA; Lagally MG
    Nature; 2006 Feb; 439(7077):703-6. PubMed ID: 16467833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Charge Tunneling in Codoped Silicon Nanodevices.
    Moraru D; Kaneko T; Tamura Y; Jupalli TT; Singh RS; Pandy C; Popa L; Iacomi F
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-shallow p-type doping of silicon by performing atomic layer deposition of Al
    Khaldi S; Karadan P; Killi K; de Oliveira CEM; Yerushalmi R
    Chem Commun (Camb); 2024 Oct; 60(82):11754-11757. PubMed ID: 39319699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.