These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 29038513)

  • 1. Anomalous Kondo resonance mediated by semiconducting graphene nanoribbons in a molecular heterostructure.
    Li Y; Ngo AT; DiLullo A; Latt KZ; Kersell H; Fisher B; Zapol P; Ulloa SE; Hla SW
    Nat Commun; 2017 Oct; 8(1):946. PubMed ID: 29038513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addressing Electron Spins Embedded in Metallic Graphene Nanoribbons.
    Friedrich N; Menchón RE; Pozo I; Hieulle J; Vegliante A; Li J; Sánchez-Portal D; Peña D; Garcia-Lekue A; Pascual JI
    ACS Nano; 2022 Sep; 16(9):14819-14826. PubMed ID: 36037149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Investigation of the Interfaces and Mechanisms of Induced Spin Polarization of 1D Narrow Zigzag Graphene- and h-BN Nanoribbons on a SrO-Terminated LSMO(001) Surface.
    Avramov P; Kuzubov AA; Kuklin AV; Lee H; Kovaleva EA; Sakai S; Entani S; Naramoto H; Sorokin PB
    J Phys Chem A; 2017 Jan; 121(3):680-689. PubMed ID: 28075136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic Interactions in Substitutional Core-Doped Graphene Nanoribbons.
    Wen ECH; Jacobse PH; Jiang J; Wang Z; McCurdy RD; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2022 Aug; 144(30):13696-13703. PubMed ID: 35867847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons.
    Zhu L; Li R; Yao K
    Phys Chem Chem Phys; 2017 Feb; 19(5):4085-4092. PubMed ID: 28111668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially separated spin carriers in spin-semiconducting graphene nanoribbons.
    Wang ZF; Jin S; Liu F
    Phys Rev Lett; 2013 Aug; 111(9):096803. PubMed ID: 24033061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic and magnetic properties of CoPc and FePc molecules on graphene: the substrate, defect, and hydrogen adsorption effects.
    Wang Y; Li X; Yang J
    Phys Chem Chem Phys; 2019 Mar; 21(10):5424-5434. PubMed ID: 30793133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic edge states and coherent manipulation of graphene nanoribbons.
    Slota M; Keerthi A; Myers WK; Tretyakov E; Baumgarten M; Ardavan A; Sadeghi H; Lambert CJ; Narita A; Müllen K; Bogani L
    Nature; 2018 May; 557(7707):691-695. PubMed ID: 29849157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic components embedded in a single graphene nanoribbon.
    Jacobse PH; Kimouche A; Gebraad T; Ervasti MM; Thijssen JM; Liljeroth P; Swart I
    Nat Commun; 2017 Jul; 8(1):119. PubMed ID: 28743870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral Interfaces between Monolayer MoS
    Haastrup MJ; Mammen MHR; Rodríguez-Fernández J; Lauritsen JV
    ACS Nano; 2021 Apr; 15(4):6699-6708. PubMed ID: 33750101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetism in Nonplanar Zigzag Edge Termini of Graphene Nanoribbons.
    Xu X; Sun K; Ishikawa A; Narita A; Kawai S
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202302534. PubMed ID: 36929312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversified Phenomena in Metal- and Transition-Metal-Adsorbed Graphene Nanoribbons.
    Lin SY; Tran NTT; Lin MF
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33802563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competing Gap Opening Mechanisms of Monolayer Graphene and Graphene Nanoribbons on Strong Topological Insulators.
    Lin Z; Qin W; Zeng J; Chen W; Cui P; Cho JH; Qiao Z; Zhang Z
    Nano Lett; 2017 Jul; 17(7):4013-4018. PubMed ID: 28534404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface decoration of phosphorene nanoribbons with 4d transition metal atoms for spintronics.
    Fu XX; Niu Y; Hao ZW; Dong MM; Wang CK
    Phys Chem Chem Phys; 2020 Jul; 22(28):16063-16071. PubMed ID: 32633289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons.
    Li YY; Chen MX; Weinert M; Li L
    Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.