These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 29038576)
1. Size effect on the deformation mechanisms of nanocrystalline platinum thin films. Shu X; Kong D; Lu Y; Long H; Sun S; Sha X; Zhou H; Chen Y; Mao S; Liu Y Sci Rep; 2017 Oct; 7(1):13264. PubMed ID: 29038576 [TBL] [Abstract][Full Text] [Related]
2. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Wang L; Teng J; Liu P; Hirata A; Ma E; Zhang Z; Chen M; Han X Nat Commun; 2014 Jul; 5():4402. PubMed ID: 25030380 [TBL] [Abstract][Full Text] [Related]
3. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals. Han X; Wang L; Yue Y; Zhang Z Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291 [TBL] [Abstract][Full Text] [Related]
4. Molecular Dynamics as a Means to Investigate Grain Size and Strain Rate Effect on Plastic Deformation of 316 L Nanocrystalline Stainless-Steel. Husain A; La P; Hongzheng Y; Jie S Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698390 [TBL] [Abstract][Full Text] [Related]
5. In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum. Wang L; Du K; Yang C; Teng J; Fu L; Guo Y; Zhang Z; Han X Nat Commun; 2020 Mar; 11(1):1167. PubMed ID: 32127536 [TBL] [Abstract][Full Text] [Related]
6. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals. Kobler A; Kashiwar A; Hahn H; Kübel C Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380 [TBL] [Abstract][Full Text] [Related]
7. Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum. Li X; Wei Y; Yang W; Gao H Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16108-13. PubMed ID: 19805266 [TBL] [Abstract][Full Text] [Related]
8. In situ observation of deformation processes in nanocrystalline face-centered cubic metals. Kobler A; Brandl C; Hahn H; Kübel C Beilstein J Nanotechnol; 2016; 7():572-80. PubMed ID: 27335747 [TBL] [Abstract][Full Text] [Related]
9. The rate sensitivity and plastic deformation of nanocrystalline tantalum films at nanoscale. Cao Z; She Q; Huang Y; Meng X Nanoscale Res Lett; 2011 Mar; 6(1):186. PubMed ID: 21711704 [TBL] [Abstract][Full Text] [Related]
10. Monotonic and cyclic plastic deformation behavior of nanocrystalline gold: atomistic simulations. Rajput A; Ghosal P; Kumar A; Paul SK J Mol Model; 2019 May; 25(6):153. PubMed ID: 31073697 [TBL] [Abstract][Full Text] [Related]
12. Detecting grain rotation at the nanoscale. Chen B; Lutker K; Lei J; Yan J; Yang S; Mao HK Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3350-3. PubMed ID: 24550455 [TBL] [Abstract][Full Text] [Related]
13. Grain rotation mechanisms in nanocrystalline materials: Multiscale observations in Pt thin films. Tian Y; Gong X; Xu M; Qiu C; Han Y; Bi Y; Estrada LV; Boltynjuk E; Hahn H; Han J; Srolovitz DJ; Pan X Science; 2024 Oct; 386(6717):49-54. PubMed ID: 39361763 [TBL] [Abstract][Full Text] [Related]
14. In Situ TEM Observation of Cooperative Grain Rotations and the Bauschinger Effect in Nanocrystalline Palladium. Kashiwar A; Hahn H; Kübel C Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33572089 [TBL] [Abstract][Full Text] [Related]
15. Investigation of reorganization of a nanocrystalline grain boundary network during biaxial creep deformation of nanocrystalline Ni using molecular dynamics simulation. Pal S; Meraj M J Mol Model; 2019 Aug; 25(9):282. PubMed ID: 31468178 [TBL] [Abstract][Full Text] [Related]
16. Atomic Simulations of Grain Structures and Deformation Behaviors in Nanocrystalline CoCrFeNiMn High-Entropy Alloy. Hou J; Li Q; Wu C; Zheng L Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934707 [TBL] [Abstract][Full Text] [Related]
17. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle. Ohuchi T; Kawazoe T; Higo Y; Funakoshi K; Suzuki A; Kikegawa T; Irifune T Sci Adv; 2015 Oct; 1(9):e1500360. PubMed ID: 26601281 [TBL] [Abstract][Full Text] [Related]
18. In situ atomic scale mechanisms of strain-induced twin boundary shear to high angle grain boundary in nanocrystalline Pt. Wang L; Teng J; Wu Y; Sha X; Xiang S; Mao S; Yu G; Zhang Z; Zou J; Han X Ultramicroscopy; 2018 Dec; 195():69-73. PubMed ID: 30195095 [TBL] [Abstract][Full Text] [Related]
19. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide. Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450 [TBL] [Abstract][Full Text] [Related]
20. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H Nat Mater; 2002 Sep; 1(1):45-8. PubMed ID: 12618848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]