BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29038872)

  • 1. A novel method to understand tumor cell invasion: integrating extracellular matrix mimicking layers in microfluidic chips by "selective curing".
    Eslami Amirabadi H; SahebAli S; Frimat JP; Luttge R; den Toonder JMJ
    Biomed Microdevices; 2017 Oct; 19(4):92. PubMed ID: 29038872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic 3D Clusters Using Human Adipose Derived Mesenchymal Stem Cells and Breast Cancer Cells: A Study on Migration and Invasion of Breast Cancer Cells.
    Park MH; Song B; Hong S; Kim SH; Lee K
    Mol Pharm; 2016 Jul; 13(7):2204-13. PubMed ID: 27163860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic modeling of the biophysical microenvironment in tumor cell invasion.
    Huang YL; Segall JE; Wu M
    Lab Chip; 2017 Sep; 17(19):3221-3233. PubMed ID: 28805874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the invasion of different breast cancer cell lines with distinct E-cadherin status in 3D using a microfluidic system.
    Eslami Amirabadi H; Tuerlings M; Hollestelle A; SahebAli S; Luttge R; van Donkelaar CC; Martens JWM; den Toonder JMJ
    Biomed Microdevices; 2019 Nov; 21(4):101. PubMed ID: 31760501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of in vitro 3-D model for lung cancer-cell metastasis study.
    Jiang R; Huang J; Sun X; Chu X; Wang F; Zhou J; Fan Q; Pang L
    BMC Cancer; 2022 Apr; 22(1):438. PubMed ID: 35449036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks.
    Sapudom J; Rubner S; Martin S; Kurth T; Riedel S; Mierke CT; Pompe T
    Biomaterials; 2015 Jun; 52():367-75. PubMed ID: 25818443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An
    Jouybar M; Sleeboom JJF; Vaezzadeh E; Sahlgren CM; den Toonder JMJ
    Front Bioeng Biotechnol; 2023; 11():1267021. PubMed ID: 38076430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Programmable Multifunctional 3D Cancer Cell Invasion Micro Platform.
    Liu Q; Muralidharan A; Saateh A; Ding Z; Ten Dijke P; Boukany PE
    Small; 2022 May; 18(20):e2107757. PubMed ID: 35266306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells.
    Lee HO; Mullins SR; Franco-Barraza J; Valianou M; Cukierman E; Cheng JD
    BMC Cancer; 2011 Jun; 11():245. PubMed ID: 21668992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of ADAM8 in the mechanophenotype of MDA-MB-231 breast cancer cells in 3D extracellular matrices.
    Hayn A; Fischer T; Mierke CT
    Front Cell Dev Biol; 2023; 11():1148162. PubMed ID: 37287457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix density drives 3D organotypic lymphatic vessel activation in a microfluidic model of the breast tumor microenvironment.
    Lugo-Cintrón KM; Ayuso JM; White BR; Harari PM; Ponik SM; Beebe DJ; Gong MM; Virumbrales-Muñoz M
    Lab Chip; 2020 May; 20(9):1586-1600. PubMed ID: 32297896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments.
    Taubenberger AV; Bray LJ; Haller B; Shaposhnykov A; Binner M; Freudenberg U; Guck J; Werner C
    Acta Biomater; 2016 May; 36():73-85. PubMed ID: 26971667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput microfluidic 3D biomimetic model enabling quantitative description of the human breast tumor microenvironment.
    Berger Fridman I; Kostas J; Gregus M; Ray S; Sullivan MR; Ivanov AR; Cohen S; Konry T
    Acta Biomater; 2021 Sep; 132():473-488. PubMed ID: 34153511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered 3D tumour model for study of glioblastoma aggressiveness and drug evaluation on a detachably assembled microfluidic device.
    Ma J; Li N; Wang Y; Wang L; Wei W; Shen L; Sun Y; Jiao Y; Chen W; Liu J
    Biomed Microdevices; 2018 Sep; 20(3):80. PubMed ID: 30191323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the Impact of a Biomimetic Mechanical Environment on Cancer Invasion and Matrix Remodeling.
    Micalet A; Pape J; Bakkalci D; Javanmardi Y; Hall C; Cheema U; Moeendarbary E
    Adv Healthc Mater; 2023 Jun; 12(14):e2201749. PubMed ID: 36333907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel.
    Jeong GS; Kwon GH; Kang AR; Jung BY; Park Y; Chung S; Lee SH
    Biomed Microdevices; 2011 Aug; 13(4):717-23. PubMed ID: 21494794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct comparison of five different 3D extracellular matrix model systems for characterization of cancer cell migration.
    Shinsato Y; Doyle AD; Li W; Yamada KM
    Cancer Rep (Hoboken); 2020 Oct; 3(5):e1257. PubMed ID: 33085847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Engineered Breast Cancer Model on a Chip to Replicate ECM-Activation In Vitro during Tumor Progression.
    Gioiella F; Urciuolo F; Imparato G; Brancato V; Netti PA
    Adv Healthc Mater; 2016 Dec; 5(23):3074-3084. PubMed ID: 27925458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer cell migration in collagen-hyaluronan composite extracellular matrices.
    Unnikandam Veettil SR; Hwang D; Correia J; Bartlett MD; Schneider IC
    Acta Biomater; 2021 Aug; 130():183-198. PubMed ID: 34116226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass.
    Wang S; Mao S; Li M; Li HF; Lin JM
    Talanta; 2019 Jan; 191():67-73. PubMed ID: 30262100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.