These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29038984)

  • 41. Assessing indoor air quality of school environments: transplanted lichen Pseudovernia furfuracea as a new tool for biomonitoring and bioaccumulation.
    Protano C; Owczarek M; Antonucci A; Guidotti M; Vitali M
    Environ Monit Assess; 2017 Jul; 189(7):358. PubMed ID: 28656559
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The application of lichens as ecological surrogates of air pollution in the subtropics: a case study in South Brazil.
    Koch NM; Branquinho C; Matos P; Pinho P; Lucheta F; Martins SM; Vargas VM
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20819-20834. PubMed ID: 27476857
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioindication of atmospheric trace metals--with special references to megacities.
    Markert B; Wuenschmann S; Fraenzle S; Graciana Figueiredo AM; Ribeiro AP; Wang M
    Environ Pollut; 2011; 159(8-9):1991-5. PubMed ID: 21396759
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lichens as sentinels for air pollution at remote alpine areas (Italy).
    Loppi S
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2563-71. PubMed ID: 24197967
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NIR spectroscopy as a tool for discriminating between lichens exposed to air pollution.
    Casale M; Bagnasco L; Giordani P; Mariotti MG; Malaspina P
    Chemosphere; 2015 Sep; 134():355-60. PubMed ID: 25973860
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accumulation of heavy metals in some species of lichens in south Tamilnadu, India.
    Uijily ME; Kumaraguru AK
    J Environ Sci Eng; 2004 Jul; 46(3):186-93. PubMed ID: 16669308
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring air quality with lichens: a comparison between mapping in forest sites and in open areas.
    Policnik H; Simoncic P; Batic F
    Environ Pollut; 2008 Jan; 151(2):395-400. PubMed ID: 17683836
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elemental mercury contamination survey in a chlor-alkali plant by the use of transplanted Spanish moss, Tillandsia usneoides (L.).
    Calasans CF; Malm O
    Sci Total Environ; 1997 Dec; 208(3):165-77. PubMed ID: 9496639
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Geographic patterns of elemental deposition in the Aegean region of Turkey indicated by the lichen, Xanthoria parietina (L.) Th. Fr.
    Yenisoy-Karakaş S; Tuncel SG
    Sci Total Environ; 2004 Aug; 329(1-3):43-60. PubMed ID: 15262157
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomonitoring with epiphytic lichens as a complementary method for the study of mercury contamination near a cement plant.
    Ljubič Mlakar T; Horvat M; Kotnik J; Jeran Z; Vuk T; Mrak T; Fajon V
    Environ Monit Assess; 2011 Oct; 181(1-4):225-41. PubMed ID: 21161678
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomonitoring as a Nature-Based Solution to Assess Atmospheric Pollution and Impacts on Public Health.
    Theophilo CYS; Ribeiro AP; Moreira EG; Aranha S; Bollmann HA; Santos CJ; de Oliveira A; Dos Santos S; Saiki M; Saldiva PHN; Ferreira ML
    Bull Environ Contam Toxicol; 2021 Jul; 107(1):29-36. PubMed ID: 33877373
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Richness, coverage and concentration of heavy metals in vascular epiphytes along an urbanization gradient.
    Becker DFP; Linden R; Schmitt JL
    Sci Total Environ; 2017 Apr; 584-585():48-54. PubMed ID: 28135612
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lichens as indicators of air pollution.
    Nash TH
    Naturwissenschaften; 1976 Aug; 63(8):364-7. PubMed ID: 9594
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lichen elemental composition distinguishes anthropogenic emissions from dust storm inputs and differs among species: Evidence from Xilinhot, Inner Mongolia, China.
    Liu HJ; Fang SB; Liu SW; Zhao LC; Guo XP; Jiang YJ; Hu JS; Liu XD; Xia Y; Wang YD; Wu QF
    Sci Rep; 2016 Oct; 6():34694. PubMed ID: 27698382
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lichens as biomonitors around a coal-fired power station in Israel.
    Garty J; Tomer S; Levin T; Lehr H
    Environ Res; 2003 Mar; 91(3):186-98. PubMed ID: 12648482
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique.
    Barandovski L; Frontasyeva MV; Stafilov T; Šajn R; Ostrovnaya TM
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):16077-97. PubMed ID: 26062458
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioindicating potential of strontium contamination with Spanish moss Tillandsia usneoides.
    Zheng G; Pemberton R; Li P
    J Environ Radioact; 2016 Feb; 152():23-7. PubMed ID: 26630037
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metal contamination in the lichen Alectoria sarmentosa near the copper smelter of Murdochville, Québec.
    Aznar JC; Richer-Laflèche M; Cluis D
    Environ Pollut; 2008 Nov; 156(1):76-81. PubMed ID: 18289751
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lichens as integrating air pollution monitors.
    Jeran Z; Jaćimović R; Batic F; Mavsar R
    Environ Pollut; 2002; 120(1):107-13. PubMed ID: 12199456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.