BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 29039000)

  • 1. Transcriptional and Posttranscriptional Regulation of Drought Stress Treatments in Brachypodium Leaves.
    Bertolini E; Pè ME; Mica E
    Methods Mol Biol; 2018; 1667():21-29. PubMed ID: 29039000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon.
    Bertolini E; Verelst W; Horner DS; Gianfranceschi L; Piccolo V; Inzé D; Pè ME; Mica E
    Mol Plant; 2013 Mar; 6(2):423-43. PubMed ID: 23264558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves.
    Verelst W; Bertolini E; De Bodt S; Vandepoele K; Demeulenaere M; Pè ME; Inzé D
    Mol Plant; 2013 Mar; 6(2):311-22. PubMed ID: 23015761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in Rubisco activase gene expression and polypeptide content in Brachypodium distachyon.
    Bayramov S; Guliyev N
    Plant Physiol Biochem; 2014 Aug; 81():61-6. PubMed ID: 24521715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brachypodium distachyon Long Noncoding RNAs: Genome-Wide Identification and Expression Analysis.
    De Quattro C; Mica E; Pè ME; Bertolini E
    Methods Mol Biol; 2018; 1667():31-42. PubMed ID: 29039001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.).
    Ferreira TH; Gentile A; Vilela RD; Costa GG; Dias LI; Endres L; Menossi M
    PLoS One; 2012; 7(10):e46703. PubMed ID: 23071617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Phosphoproteome Analysis of Seedling Leaves in Brachypodium distachyon L. Reveals Central Phosphorylated Proteins Involved in the Drought Stress Response.
    Yuan LL; Zhang M; Yan X; Bian YW; Zhen SM; Yan YM
    Sci Rep; 2016 Oct; 6():35280. PubMed ID: 27748408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression.
    Budak H; Akpinar A
    OMICS; 2011 Nov; 15(11):791-9. PubMed ID: 22122669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B
    Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinations of Small RNA, RNA, and Degradome Sequencing Uncovers the Expression Pattern of microRNA⁻mRNA Pairs Adapting to Drought Stress in Leaf and Root of
    Ji Y; Chen P; Chen J; Pennerman KK; Liang X; Yan H; Zhou S; Feng G; Wang C; Yin G; Zhang X; Hu Y; Huang L
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30314311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet.
    Wang Y; Li L; Tang S; Liu J; Zhang H; Zhi H; Jia G; Diao X
    BMC Genet; 2016 Apr; 17():57. PubMed ID: 27068810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of microRNAs involved in drought stress responses in early-maturing cotton by high-throughput sequencing.
    Dong Z; Zhang J; Zhu Q; Zhao L; Sui S; Li Z; Zhang Y; Wang H; Tian D; Zhao Y
    Genes Genomics; 2018 Mar; 40(3):305-314. PubMed ID: 29892798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strand-specific RNA-seq based identification and functional prediction of drought-responsive lncRNAs in cassava.
    Ding Z; Tie W; Fu L; Yan Y; Liu G; Yan W; Li Y; Wu C; Zhang J; Hu W
    BMC Genomics; 2019 Mar; 20(1):214. PubMed ID: 30866814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background.
    Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B
    Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for Coexpression Network Construction and Stress-Responsive Expression Analysis in Brachypodium.
    Sircar S; Parekh N; Sablok G
    Methods Mol Biol; 2018; 1667():203-221. PubMed ID: 29039014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural variation of drought response in Brachypodium distachyon.
    Luo N; Liu J; Yu X; Jiang Y
    Physiol Plant; 2011 Jan; 141(1):19-29. PubMed ID: 20875057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs regulate the main events in rice drought stress response by manipulating the water supply to shoots.
    Fard EM; Bakhshi B; Farsi M; Kakhki AM; Nikpay N; Ebrahimi MA; Mardi M; Salekdeh GH
    Mol Biosyst; 2017 Oct; 13(11):2289-2302. PubMed ID: 28872648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent leaf proteome alterations of Brachypodium distachyon in response to drought stress.
    Tatli O; Sogutmaz Ozdemir B; Dinler Doganay G
    Plant Mol Biol; 2017 Aug; 94(6):609-623. PubMed ID: 28647905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.
    Hu H; Rashotte AM; Singh NK; Weaver DB; Goertzen LR; Singh SR; Locy RD
    PLoS One; 2015; 10(6):e0127468. PubMed ID: 26070200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage.
    Cheah BH; Nadarajah K; Divate MD; Wickneswari R
    BMC Genomics; 2015 Sep; 16(1):692. PubMed ID: 26369665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.