These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 29039033)

  • 1. Protein crystal quality oriented disulfide bond engineering.
    Pu M; Xu Z; Peng Y; Hou Y; Liu D; Wang Y; Liu H; Song G; Liu ZJ
    Protein Cell; 2018 Jul; 9(7):659-663. PubMed ID: 29039033
    [No Abstract]   [Full Text] [Related]  

  • 2. Search for allosteric disulfide bonds in NMR structures.
    Schmidt B; Hogg PJ
    BMC Struct Biol; 2007 Jul; 7():49. PubMed ID: 17640393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAXS studies of X-ray induced disulfide bond damage: Engineering high-resolution insight from a low-resolution technique.
    Stachowski TR; Snell ME; Snell EH
    PLoS One; 2020; 15(11):e0239702. PubMed ID: 33201877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial use of disulfide bridges and native sulfur-SAD phasing for rapid structure determination of coiled-coils.
    Kraatz SHW; Bianchi S; Steinmetz MO
    Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 30135143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-template approach to modeling engineered disulfide bonds.
    Pellequer JL; Chen SW
    Proteins; 2006 Oct; 65(1):192-202. PubMed ID: 16807887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How the disulfide conformation determines the disulfide/thiol redox potential.
    Roos G; Fonseca Guerra C; Bickelhaupt FM
    J Biomol Struct Dyn; 2015; 33(1):93-103. PubMed ID: 24256142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational characterization of disulfide bonds: a tool for protein classification.
    Marques JR; da Fonseca RR; Drury B; Melo A
    J Theor Biol; 2010 Dec; 267(3):388-95. PubMed ID: 20851707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulfide bond acquisition through eukaryotic protein evolution.
    Wong JW; Ho SY; Hogg PJ
    Mol Biol Evol; 2011 Jan; 28(1):327-34. PubMed ID: 20675408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based approach to the prediction of disulfide bonds in proteins.
    Salam NK; Adzhigirey M; Sherman W; Pearlman DA
    Protein Eng Des Sel; 2014 Oct; 27(10):365-74. PubMed ID: 24817698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray crystallography reveals stringent conservation of protein fold after removal of the only disulfide bridge from a stabilized immunoglobulin variable domain.
    Usón I; Bes MT; Sheldrick GM; Schneider TR; Hartsch T; Fritz HJ
    Fold Des; 1997; 2(6):357-61. PubMed ID: 9427009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structures of oxidized forms of human peroxiredoxin 5 with an intramolecular disulfide bond confirm the proposed enzymatic mechanism for atypical 2-Cys peroxiredoxins.
    Smeets A; Marchand C; Linard D; Knoops B; Declercq JP
    Arch Biochem Biophys; 2008 Sep; 477(1):98-104. PubMed ID: 18489898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disulfide by Design: a computational method for the rational design of disulfide bonds in proteins.
    Dombkowski AA
    Bioinformatics; 2003 Sep; 19(14):1852-3. PubMed ID: 14512360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric disulfide bonds.
    Schmidt B; Ho L; Hogg PJ
    Biochemistry; 2006 Jun; 45(24):7429-33. PubMed ID: 16768438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding of small disulfide-rich proteins: clarifying the puzzle.
    Arolas JL; Aviles FX; Chang JY; Ventura S
    Trends Biochem Sci; 2006 May; 31(5):292-301. PubMed ID: 16600598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for target protein recognition by the protein disulfide reductase thioredoxin.
    Maeda K; Hägglund P; Finnie C; Svensson B; Henriksen A
    Structure; 2006 Nov; 14(11):1701-10. PubMed ID: 17098195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and insertion of 3-carbon bridges in protein disulfide bonds: a computational approach.
    Zloh M; Shaunak S; Balan S; Brocchini S
    Nat Protoc; 2007; 2(5):1070-83. PubMed ID: 17545999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disulfide mutants of barnase. I: Changes in stability and structure assessed by biophysical methods and X-ray crystallography.
    Clarke J; Henrick K; Fersht AR
    J Mol Biol; 1995 Oct; 253(3):493-504. PubMed ID: 7473729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequence of the removal of evolutionary conserved disulfide bridges on the structure and function of charybdotoxin and evidence that particular cysteine spacings govern specific disulfide bond formation.
    Drakopoulou E; Vizzavona J; Neyton J; Aniort V; Bouet F; Virelizier H; Ménez A; Vita C
    Biochemistry; 1998 Feb; 37(5):1292-301. PubMed ID: 9477955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures and structural stabilities of the disulfide bond-deficient soybean proglycinin mutants C12G and C88S.
    Adachi M; Okuda E; Kaneda Y; Hashimoto A; Shutov AD; Becker C; Müntz K; Utsumi S
    J Agric Food Chem; 2003 Jul; 51(16):4633-9. PubMed ID: 14705889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the structures of proteins with the UNRES force field, including dynamic formation and breaking of disulfide bonds.
    Czaplewski C; Oldziej S; Liwo A; Scheraga HA
    Protein Eng Des Sel; 2004 Jan; 17(1):29-36. PubMed ID: 14985535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.