These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29039644)

  • 21. A QCM study on the adsorption of colloidal laponite at the solid/liquid interface.
    Xu D; Hodges C; Ding Y; Biggs S; Brooker A; York D
    Langmuir; 2010 Jun; 26(11):8366-72. PubMed ID: 20121170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers.
    Vogel N; Belisle RA; Hatton B; Wong TS; Aizenberg J
    Nat Commun; 2013; 4():2167. PubMed ID: 23900310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible and Stable Omniphobic Surfaces Based on Biomimetic Repulsive Air-Spring Structures.
    Seo D; Cha SK; Kim G; Shin H; Hong S; Cho YH; Chun H; Choi Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5877-5884. PubMed ID: 30648844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hard yet Flexible Transparent Omniphobic GPOSS Coatings Modified with Perfluorinated Agents.
    Bender DN; Zhang K; Wang J; Liu G
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10467-10479. PubMed ID: 33596043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substrate-Independent, Transparent Oil-Repellent Coatings with Self-Healing and Persistent Easy-Sliding Oil Repellency.
    Yu L; Chen GY; Xu H; Liu X
    ACS Nano; 2016 Jan; 10(1):1076-85. PubMed ID: 26728655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible-templated imprinting for fluorine-free, omniphobic plastics with re-entrant structures.
    Zhao X; Park DS; Choi J; Park S; Soper SA; Murphy MC
    J Colloid Interface Sci; 2021 Mar; 585():668-675. PubMed ID: 33127056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing omniphobicity by immersion.
    Arunachalam S; Das R; Nauruzbayeva J; Domingues EM; Mishra H
    J Colloid Interface Sci; 2019 Jan; 534():156-162. PubMed ID: 30218988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications.
    Xi B; Verma LK; Li J; Bhatia CS; Danner AJ; Yang H; Zeng HC
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1093-102. PubMed ID: 22260264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Liquid-like polymer-based self-cleaning coating for effective prevention of liquid foods contaminations.
    Yang C; Wu Q; Zhong L; Lyu C; He G; Yang C; Li X; Huang X; Hu N; Chen M; Hang T; Xie X
    J Colloid Interface Sci; 2021 May; 589():327-335. PubMed ID: 33476889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces.
    Domingues EM; Arunachalam S; Mishra H
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21532-21538. PubMed ID: 28580784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface Chemistry Enhancements for the Tunable Super-Liquid Repellency of Low-Surface-Tension Liquids.
    Wong WSY
    Nano Lett; 2019 Mar; 19(3):1892-1901. PubMed ID: 30726096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cross-linkage effect of cellulose/laponite hybrids in aqueous dispersions and solid films.
    Yuan Z; Fan Q; Dai X; Zhao C; Lv A; Zhang J; Xu G; Qin M
    Carbohydr Polym; 2014 Feb; 102():431-7. PubMed ID: 24507302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating.
    Zhu P; Kong T; Tang X; Wang L
    Nat Commun; 2017 Jun; 8():15823. PubMed ID: 28604698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability.
    Li YC; Schulz J; Grunlan JC
    ACS Appl Mater Interfaces; 2009 Oct; 1(10):2338-47. PubMed ID: 20355871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transparent superhydrophobic/translucent superamphiphobic coatings based on silica-fluoropolymer hybrid nanoparticles.
    Lee SG; Ham DS; Lee DY; Bong H; Cho K
    Langmuir; 2013 Dec; 29(48):15051-7. PubMed ID: 24224524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conducting, transparent and flexible substrates obtained from interfacial thin films of double-walled carbon nanotubes.
    Souza VHR; Flahaut E; Zarbin AJG
    J Colloid Interface Sci; 2017 Sep; 502():146-152. PubMed ID: 28478221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Substrate-independent superliquiphobic coatings for water, oil, and surfactant repellency: An overview.
    Bhushan B; Martin S
    J Colloid Interface Sci; 2018 Sep; 526():90-105. PubMed ID: 29723796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties.
    Nine MJ; Cole MA; Johnson L; Tran DN; Losic D
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28482-93. PubMed ID: 26632960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanically durable, superomniphobic coatings prepared by layer-by-layer technique for self-cleaning and anti-smudge.
    Brown PS; Bhushan B
    J Colloid Interface Sci; 2015 Oct; 456():210-8. PubMed ID: 26133277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Layer-by-layer assembled PVA/Laponite multilayer free-standing films and their mechanical and thermal properties.
    Patro TU; Wagner HD
    Nanotechnology; 2011 Nov; 22(45):455706. PubMed ID: 22020248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.