These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29039662)

  • 1. Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds.
    Ramesh R; Reddy DS
    J Med Chem; 2018 May; 61(9):3779-3798. PubMed ID: 29039662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon switch: Carbon-silicon Bioisosteric replacement as a strategy to modulate the selectivity, physicochemical, and drug-like properties in anticancer pharmacophores.
    Fotie J; Matherne CM; Wroblewski JE
    Chem Biol Drug Des; 2023 Aug; 102(2):235-254. PubMed ID: 37029092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medicinal chemistry inspired fragment-based drug discovery.
    Lanter J; Zhang X; Sui Z
    Methods Enzymol; 2011; 493():421-45. PubMed ID: 21371600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Design Strategy of Biologically Active Compounds Using Various Elements].
    Fujii S
    Yakugaku Zasshi; 2022; 142(2):131-137. PubMed ID: 35110449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon chemistry as a novel source of chemical diversity in drug design.
    Bains W; Tacke R
    Curr Opin Drug Discov Devel; 2003 Jul; 6(4):526-43. PubMed ID: 12951816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon-Containing Complex II Acaricides─Design, Synthesis, and Pharmacological Optimization.
    Zhou C; Wang X; Quan X; Cheng J; Li Z; Maienfisch P
    J Agric Food Chem; 2022 Sep; 70(36):11063-11074. PubMed ID: 35575634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in the medicinal chemistry of silicon: C/Si exchange and beyond.
    Fujii S; Hashimoto Y
    Future Med Chem; 2017 Apr; 9(5):485-505. PubMed ID: 28362125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. sc-PDB-Frag: a database of protein-ligand interaction patterns for Bioisosteric replacements.
    Desaphy J; Rognan D
    J Chem Inf Model; 2014 Jul; 54(7):1908-18. PubMed ID: 24991975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient routes to carbon-silicon bond formation for the synthesis of silicon-containing peptides and azasilaheterocycles.
    Min GK; Hernández D; Skrydstrup T
    Acc Chem Res; 2013 Feb; 46(2):457-70. PubMed ID: 23214467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalization of Endohedral Metallofullerenes with Reactive Silicon and Germanium Compounds.
    Kako M; Nagase S; Akasaka T
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28708116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput development of amphiphile self-assembly materials: fast-tracking synthesis, characterization, formulation, application, and understanding.
    Mulet X; Conn CE; Fong C; Kennedy DF; Moghaddam MJ; Drummond CJ
    Acc Chem Res; 2013 Jul; 46(7):1497-505. PubMed ID: 23427836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSAR studies in the discovery of novel type-II diabetic therapies.
    Abuhammad A; Taha MO
    Expert Opin Drug Discov; 2016; 11(2):197-214. PubMed ID: 26558613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Bioisosteric Substituents by a Deep Neural Network.
    Ertl P
    J Chem Inf Model; 2020 Jul; 60(7):3369-3375. PubMed ID: 32539382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in fragment-based lead discovery.
    Schulz MN; Hubbard RE
    Curr Opin Pharmacol; 2009 Oct; 9(5):615-21. PubMed ID: 19477685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde?
    Cruz-Monteagudo M; Medina-Franco JL; Pérez-Castillo Y; Nicolotti O; Cordeiro MN; Borges F
    Drug Discov Today; 2014 Aug; 19(8):1069-80. PubMed ID: 24560935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioisosteric Replacement and Scaffold Hopping in Lead Generation and Optimization.
    Langdon SR; Ertl P; Brown N
    Mol Inform; 2010 May; 29(5):366-85. PubMed ID: 27463193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water structuring and collagen adsorption at hydrophilic and hydrophobic silicon surfaces.
    Cole DJ; Payne MC; Ciacchi LC
    Phys Chem Chem Phys; 2009 Dec; 11(48):11395-9. PubMed ID: 20024408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.
    Meanwell NA
    Chem Res Toxicol; 2011 Sep; 24(9):1420-56. PubMed ID: 21790149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Bioactive Scaffolds Based on QSAR Models.
    Nakagawa T; Miyao T; Funatsu K
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29135084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.