These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 29039678)
1. Electrochemical Properties of Sulfurized-Polyacrylonitrile Cathode for Lithium-Sulfur Batteries: Effect of Polyacrylic Acid Binder and Fluoroethylene Carbonate Additive. Kim HM; Hwang JY; Aurbach D; Sun YK J Phys Chem Lett; 2017 Nov; 8(21):5331-5337. PubMed ID: 29039678 [TBL] [Abstract][Full Text] [Related]
2. Engineering Bifunctional Host Materials of Sulfur and Lithium-Metal Based on Nitrogen-Enriched Polyacrylonitrile for Li-S Batteries. Dai Z; Wang M; Zhang Y; Wang B; Luo H; Zhang X; Wang Q; Zhang Y; Wu H Chemistry; 2020 Jul; 26(40):8784-8793. PubMed ID: 32583913 [TBL] [Abstract][Full Text] [Related]
3. Strategy for High-Energy Li-S Battery Coupling with a Li Metal Anode and a Sulfurized Polyacrylonitrile Cathode. Park H; Kang H; Kim H; Kansara S; Allen JL; Tran D; Sun HH; Hwang JY ACS Appl Mater Interfaces; 2023 Oct; 15(39):45876-45885. PubMed ID: 37726216 [TBL] [Abstract][Full Text] [Related]
4. Effect of Electrolyte Chemistry and Sulfur Content in Li||Sulfurized Polyacrylonitrile (SPAN) Batteries. Yu K; Cai G; Li M; Wu J; Gupta V; Lee DJ; Holoubek J; Chen Z ACS Appl Mater Interfaces; 2023 Sep; 15(37):43724-43731. PubMed ID: 37695100 [TBL] [Abstract][Full Text] [Related]
5. Stable Room-Temperature Sodium-Sulfur Batteries in Ether-Based Electrolytes Enabled by the Fluoroethylene Carbonate Additive. Liu D; Li Z; Li X; Chen X; Li Z; Yuan L; Huang Y ACS Appl Mater Interfaces; 2022 Feb; 14(5):6658-6666. PubMed ID: 35076203 [TBL] [Abstract][Full Text] [Related]
6. Reconfiguring Organosulfur Cathode by Over-Lithiation to Enable Ultrathick Lithium Metal Anode toward Practical Lithium-Sulfur Batteries. Jiang Z; Guo HJ; Zeng Z; Han Z; Hu W; Wen R; Xie J ACS Nano; 2020 Oct; 14(10):13784-13793. PubMed ID: 32924432 [TBL] [Abstract][Full Text] [Related]
7. Refining Interfaces between Electrolyte and Both Electrodes with Carbon Nanotube Paper for High-Loading Lithium-Sulfur Batteries. Peng Y; Wen Z; Liu C; Zeng J; Wang Y; Zhao J ACS Appl Mater Interfaces; 2019 Feb; 11(7):6986-6994. PubMed ID: 30644725 [TBL] [Abstract][Full Text] [Related]
8. Tailoring Solvation Solvent in Localized High-Concentration Electrolytes for Lithium||Sulfurized Polyacrylonitrile. Kim JM; Gao P; Miao Q; Zhao Q; Rahman MM; Chen P; Zhang X; Hu E; Liu P; Zhang JG; Xu W ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38620048 [TBL] [Abstract][Full Text] [Related]
9. Pinned Electrode/Electrolyte Interphase and Its Formation Origin for Sulfurized Polyacrylonitrile Cathode in Stable Lithium Batteries. Zhang X; Gao P; Wu Z; Engelhard MH; Cao X; Jia H; Xu Y; Liu H; Wang C; Liu J; Zhang JG; Liu P; Xu W ACS Appl Mater Interfaces; 2022 Nov; 14(46):52046-52057. PubMed ID: 36377408 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Performance of a Lithium-Sulfur Battery Using a Carbonate-Based Electrolyte. Xu Z; Wang J; Yang J; Miao X; Chen R; Qian J; Miao R Angew Chem Int Ed Engl; 2016 Aug; 55(35):10372-5. PubMed ID: 27461554 [TBL] [Abstract][Full Text] [Related]
12. Sulfurized Polyacrylonitrile for High-Performance Lithium-Sulfur Batteries: In-Depth Computational Approach Revealing Multiple Sulfur's Reduction Pathways and Hidden Li Perez Beltran S; Balbuena PB ACS Appl Mater Interfaces; 2021 Jan; 13(1):491-502. PubMed ID: 33377389 [TBL] [Abstract][Full Text] [Related]
13. Binder-free and high-loading sulfurized polyacrylonitrile cathode for lithium/sulfur batteries. Kim H; Kim C; Sadan MK; Yeo H; Cho KK; Kim KW; Ahn JH; Ahn HJ RSC Adv; 2021 Apr; 11(26):16122-16130. PubMed ID: 35481196 [TBL] [Abstract][Full Text] [Related]
14. Powering lithium-sulfur batteries by ultrathin sulfurized polyacrylonitrile nanosheets. Wang K; Zhao T; Zhang N; Feng T; Li L; Wu F; Chen R Nanoscale; 2021 Oct; 13(39):16690-16695. PubMed ID: 34590652 [TBL] [Abstract][Full Text] [Related]
15. Two Competing Reactions of Sulfurized Polyacrylonitrile Produce High-Performance Lithium-Sulfur Batteries. Li H; Xue W; Wang L; Liu T ACS Appl Mater Interfaces; 2021 Jun; 13(21):25002-25009. PubMed ID: 34015915 [TBL] [Abstract][Full Text] [Related]
16. New Insights into the N-S Bond Formation of a Sulfurized-Polyacrylonitrile Cathode Material for Lithium-Sulfur Batteries. Huang CJ; Lin KY; Hsieh YC; Su WN; Wang CH; Brunklaus G; Winter M; Jiang JC; Hwang BJ ACS Appl Mater Interfaces; 2021 Mar; 13(12):14230-14238. PubMed ID: 33750110 [TBL] [Abstract][Full Text] [Related]
17. Understanding the Roles of the Electrode/Electrolyte Interface for Enabling Stable Li∥Sulfurized Polyacrylonitrile Batteries. Wu Z; Bak SM; Shadike Z; Yu S; Hu E; Xing X; Du Y; Yang XQ; Liu H; Liu P ACS Appl Mater Interfaces; 2021 Jul; 13(27):31733-31740. PubMed ID: 34213902 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the Electrochemical Performance of SbTe Bimetallic Anodes for High-Performance Sodium-Ion Batteries: Roles of the Binder and Carbon Support Matrix. Nagulapati VM; Kim DS; Oh J; Lee JH; Hur J; Kim IT; Lee SG Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31394728 [TBL] [Abstract][Full Text] [Related]
19. Fluoroethylene Carbonate Enabling a Robust LiF-rich Solid Electrolyte Interphase to Enhance the Stability of the MoS Zhu Z; Tang Y; Lv Z; Wei J; Zhang Y; Wang R; Zhang W; Xia H; Ge M; Chen X Angew Chem Int Ed Engl; 2018 Mar; 57(14):3656-3660. PubMed ID: 29488310 [TBL] [Abstract][Full Text] [Related]
20. Dual additive of lithium titanate and sulfurized pyrolyzed polyacrylonitrile in sulfur cathode for high rate performance in lithium-sulfur battery. Takemoto K; Wakasugi J; Kubota M; Kanamura K; Abe H Phys Chem Chem Phys; 2022 Dec; 25(1):351-358. PubMed ID: 36477769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]