These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 29039783)
1. Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots. Sun H; Xia B; Wang X; Gao F; Zhou Y Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29039783 [TBL] [Abstract][Full Text] [Related]
2. Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold- and drought-stressed seedlings. Liu M; Shi J; Lu C BMC Plant Biol; 2013 Jun; 13():88. PubMed ID: 23734749 [TBL] [Abstract][Full Text] [Related]
3. Transcriptomic Analysis of Drought Stress Responses in Ammopiptanthus mongolicus Leaves Using the RNA-Seq Technique. Gao F; Wang J; Wei S; Li Z; Wang N; Li H; Feng J; Li H; Zhou Y; Zhang F PLoS One; 2015; 10(4):e0124382. PubMed ID: 25923822 [TBL] [Abstract][Full Text] [Related]
4. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus. Zhou Y; Gao F; Liu R; Feng J; Li H BMC Genomics; 2012 Jun; 13():266. PubMed ID: 22721448 [TBL] [Abstract][Full Text] [Related]
5. Quantitative phosphoproteomics reveals the role of wild soybean GsSnRK1 as a metabolic regulator under drought and alkali stresses. Li Q; Sun Q; Wang D; Liu Y; Zhang P; Lu H; Zhang Y; Zhang S; Wang A; Ding X; Xiao J J Proteomics; 2022 Apr; 258():104528. PubMed ID: 35182787 [TBL] [Abstract][Full Text] [Related]
6. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). Zhang M; Lv D; Ge P; Bian Y; Chen G; Zhu G; Li X; Yan Y J Proteomics; 2014 Sep; 109():290-308. PubMed ID: 25065648 [TBL] [Abstract][Full Text] [Related]
7. Dynamic Phosphoproteome Analysis of Seedling Leaves in Brachypodium distachyon L. Reveals Central Phosphorylated Proteins Involved in the Drought Stress Response. Yuan LL; Zhang M; Yan X; Bian YW; Zhen SM; Yan YM Sci Rep; 2016 Oct; 6():35280. PubMed ID: 27748408 [TBL] [Abstract][Full Text] [Related]
8. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress. Xie H; Yang DH; Yao H; Bai G; Zhang YH; Xiao BG Biochem Biophys Res Commun; 2016 Jan; 469(3):768-75. PubMed ID: 26692494 [TBL] [Abstract][Full Text] [Related]
9. iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. Ma C; Zhou J; Chen G; Bian Y; Lv D; Li X; Wang Z; Yan Y BMC Genomics; 2014 Nov; 15(1):1029. PubMed ID: 25427527 [TBL] [Abstract][Full Text] [Related]
10. Functional identification of Ammopiptanthus mongolicus anion channel AmSLAC1 involved in drought induced stomata closure. Junlin L; Lei H; Yanhua S; Hongen G; Huanchao Z Plant Physiol Biochem; 2019 Oct; 143():340-350. PubMed ID: 31541989 [TBL] [Abstract][Full Text] [Related]
11. Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Li H; Li Y; Ke Q; Kwak SS; Zhang S; Deng X Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33271965 [TBL] [Abstract][Full Text] [Related]
12. Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. Wu Y; Wei W; Pang X; Wang X; Zhang H; Dong B; Xing Y; Li X; Wang M BMC Genomics; 2014 Aug; 15(1):671. PubMed ID: 25108399 [TBL] [Abstract][Full Text] [Related]
13. Comparative Proteomics Reveals that Phosphorylation of β Carbonic Anhydrase 1 Might be Important for Adaptation to Drought Stress in Brassica napus. Wang L; Jin X; Li Q; Wang X; Li Z; Wu X Sci Rep; 2016 Dec; 6():39024. PubMed ID: 27966654 [TBL] [Abstract][Full Text] [Related]
14. Significant and unique changes in phosphorylation levels of four phosphoproteins in two apple rootstock genotypes under drought stress. Ren J; Mao J; Zuo C; Calderón-Urrea A; Dawuda MM; Zhao X; Li X; Chen B Mol Genet Genomics; 2017 Dec; 292(6):1307-1322. PubMed ID: 28710562 [TBL] [Abstract][Full Text] [Related]
15. Functional analysis of a type 2C protein phosphatase gene from Ammopiptanthus mongolicus. Han L; Li J; Jin M; Su Y Gene; 2018 May; 653():29-42. PubMed ID: 29427736 [TBL] [Abstract][Full Text] [Related]
16. Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Liu H; Wang FF; Peng XJ; Huang JH; Shen SH Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30626061 [TBL] [Abstract][Full Text] [Related]
17. Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network. Gao J; Zhang S; He WD; Shao XH; Li CY; Wei YR; Deng GM; Kuang RB; Hu CH; Yi GJ; Yang QS Sci Rep; 2017 Jan; 7():40852. PubMed ID: 28106078 [TBL] [Abstract][Full Text] [Related]
18. Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.). Xiao S; Liu L; Zhang Y; Sun H; Zhang K; Bai Z; Dong H; Liu Y; Li C BMC Plant Biol; 2020 Jul; 20(1):328. PubMed ID: 32652934 [TBL] [Abstract][Full Text] [Related]
19. Integrated proteomic analysis of Brachypodium distachyon roots and leaves reveals a synergistic network in the response to drought stress and recovery. Bian Y; Deng X; Yan X; Zhou J; Yuan L; Yan Y Sci Rep; 2017 Apr; 7():46183. PubMed ID: 28387352 [TBL] [Abstract][Full Text] [Related]
20. [Ectopic expression of the AmDREB1F gene from Ammopiptanthus mongolicus enhances stress tolerance of transgenic Arabidopsis]. Tang K; Dong B; Wen X; Yin Y; Xue M; Su Z; Wang M Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4329-4341. PubMed ID: 34984878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]