BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29039937)

  • 1. Concentration-Independent Stereodynamic g-Probe for Chiroptical Enantiomeric Excess Determination.
    Zardi P; Wurst K; Licini G; Zonta C
    J Am Chem Soc; 2017 Nov; 139(44):15616-15619. PubMed ID: 29039937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output.
    Wolf C; Bentley KW
    Chem Soc Rev; 2013 Jun; 42(12):5408-24. PubMed ID: 23482984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Chirality Sensing with a Stereodynamic Aluminum Biphenolate Probe.
    De Los Santos ZA; Joyce LA; Sherer EC; Welch CJ; Wolf C
    J Org Chem; 2019 Apr; 84(8):4639-4645. PubMed ID: 30019902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chirality sensing with stereodynamic copper(I) complexes.
    De Los Santos ZA; Legaux NM; Wolf C
    Chirality; 2017 Nov; 29(11):663-669. PubMed ID: 28902429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stereodynamic probe providing a chiroptical response to substrate-controlled induction of an axially chiral arylacetylene framework.
    Iwaniuk DP; Wolf C
    J Am Chem Soc; 2011 Mar; 133(8):2414-7. PubMed ID: 21306122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular dichroism sensing of chiral compounds using an achiral metal complex as probe.
    Irfanoglu B; Wolf C
    Chirality; 2014 Aug; 26(8):379-84. PubMed ID: 24839183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stereodynamic fluorescent probe for amino acids. Circular dichroism and circularly polarized luminescence analysis.
    Carmo Dos Santos NA; Badetti E; Licini G; Abbate S; Longhi G; Zonta C
    Chirality; 2018 Jan; 30(1):65-73. PubMed ID: 29105860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence detected circular dichroism (FDCD) of a stereodynamic probe.
    Penasa R; Begato F; Licini G; Wurst K; Abbate S; Longhi G; Zonta C
    Chem Commun (Camb); 2023 May; 59(44):6714-6717. PubMed ID: 37191071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending substrate sensing capabilities of zinc tris(2-pyridylmethyl)amine-based stereodynamic probe.
    Scaramuzzo FA; Badetti E; Licini G; Zonta C
    Chirality; 2019 May; 31(5):375-383. PubMed ID: 30884553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Chirality Sensing with an Auxiliary-Free Earth-Abundant Cobalt Probe.
    De Los Santos ZA; Lynch CC; Wolf C
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):1198-1202. PubMed ID: 30500091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative chirality sensing of amines and amino alcohols via Schiff base formation with a stereodynamic UV/CD probe.
    De Los Santos ZA; Ding R; Wolf C
    Org Biomol Chem; 2016 Feb; 14(6):1934-9. PubMed ID: 26765638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral amplification with a stereodynamic triaryl probe: assignment of the absolute configuration and enantiomeric excess of amino alcohols.
    Ghosn MW; Wolf C
    J Am Chem Soc; 2009 Nov; 131(45):16360-1. PubMed ID: 19902975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advantages of electronic circular dichroism detection for the stereochemical analysis and characterization of drugs and natural products by liquid chromatography.
    Bertucci C; Tedesco D
    J Chromatogr A; 2012 Dec; 1269():69-81. PubMed ID: 23040981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive chirality sensing via Schiff base formation.
    Pilicer SL; Mancinelli M; Mazzanti A; Wolf C
    Org Biomol Chem; 2019 Jul; 17(27):6699-6705. PubMed ID: 31243416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective sensing of chiral amino alcohols with a stereodynamic arylacetylene-based probe.
    Iwaniuk DP; Bentley KW; Wolf C
    Chirality; 2012 Jul; 24(7):584-9. PubMed ID: 22628254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors.
    Feng W; Kim JY; Wang X; Calcaterra HA; Qu Z; Meshi L; Kotov NA
    Sci Adv; 2017 Mar; 3(3):e1601159. PubMed ID: 28275728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropy spectra for enantiomeric differentiation of biomolecular building blocks.
    Evans AC; Meinert C; Bredehöft JH; Giri C; Jones NC; Hoffmann SV; Meierhenrich UJ
    Top Curr Chem; 2013; 341():271-99. PubMed ID: 23839281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Click chemistry enables quantitative chiroptical sensing of chiral compounds in protic media and complex mixtures.
    Thanzeel FY; Balaraman K; Wolf C
    Nat Commun; 2018 Dec; 9(1):5323. PubMed ID: 30552322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereodynamic chemosensor with selective circular dichroism and fluorescence readout for in situ determination of absolute configuration, enantiomeric excess, and concentration of chiral compounds.
    Bentley KW; Wolf C
    J Am Chem Soc; 2013 Aug; 135(33):12200-3. PubMed ID: 23909867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.