BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 29040409)

  • 1. Towards dynamic genome-scale models.
    Gilbert D; Heiner M; Jayaweera Y; Rohr C
    Brief Bioinform; 2019 Jul; 20(4):1167-1180. PubMed ID: 29040409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli.
    McCloskey D; Palsson BØ; Feist AM
    Mol Syst Biol; 2013; 9():661. PubMed ID: 23632383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information.
    Feist AM; Henry CS; Reed JL; Krummenacker M; Joyce AR; Karp PD; Broadbelt LJ; Hatzimanikatis V; Palsson BØ
    Mol Syst Biol; 2007; 3():121. PubMed ID: 17593909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive genome-scale reconstruction of Escherichia coli metabolism--2011.
    Orth JD; Conrad TM; Na J; Lerman JA; Nam H; Feist AM; Palsson BØ
    Mol Syst Biol; 2011 Oct; 7():535. PubMed ID: 21988831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Logical transformation of genome-scale metabolic models for gene level applications and analysis.
    Zhang C; Ji B; Mardinoglu A; Nielsen J; Hua Q
    Bioinformatics; 2015 Jul; 31(14):2324-31. PubMed ID: 25735769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genome-scale metabolic flux model of Escherichia coli K-12 derived from the EcoCyc database.
    Weaver DS; Keseler IM; Mackie A; Paulsen IT; Karp PD
    BMC Syst Biol; 2014 Jun; 8():79. PubMed ID: 24974895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multiscale Agent-Based Model for the Investigation of E. coli K12 Metabolic Response During Biofilm Formation.
    Latif M; May EE
    Bull Math Biol; 2018 Nov; 80(11):2917-2956. PubMed ID: 30218278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using PSAMM for the Curation and Analysis of Genome-Scale Metabolic Models.
    Dufault-Thompson K; Steffensen JL; Zhang Y
    Methods Mol Biol; 2018; 1716():131-150. PubMed ID: 29222752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconciliation of metabolites and biochemical reactions for metabolic networks.
    Bernard T; Bridge A; Morgat A; Moretti S; Xenarios I; Pagni M
    Brief Bioinform; 2014 Jan; 15(1):123-35. PubMed ID: 23172809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of metabolic states using genome-scale metabolic models.
    Sarathy C; Breuer M; Kutmon M; Adriaens ME; Evelo CT; Arts ICW
    PLoS Comput Biol; 2021 Nov; 17(11):e1009522. PubMed ID: 34748535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic validation of computational models using pseudo-3D spatio-temporal model checking.
    Pârvu O; Gilbert D
    BMC Syst Biol; 2014 Dec; 8():124. PubMed ID: 25440773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MASSpy: Building, simulating, and visualizing dynamic biological models in Python using mass action kinetics.
    Haiman ZB; Zielinski DC; Koike Y; Yurkovich JT; Palsson BO
    PLoS Comput Biol; 2021 Jan; 17(1):e1008208. PubMed ID: 33507922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modelling of genome-scale metabolic networks and its application to CHO cell cultures.
    Rejc Ž; Magdevska L; Tršelič T; Osolin T; Vodopivec R; Mraz J; Pavliha E; Zimic N; Cvitanović T; Rozman D; Moškon M; Mraz M
    Comput Biol Med; 2017 Sep; 88():150-160. PubMed ID: 28732234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional analyses of microbial metabolic networks reveal novel insights into genome-scale metabolic fluxes.
    Li G; Cao H; Xu Y
    Brief Bioinform; 2019 Jul; 20(4):1590-1603. PubMed ID: 29596572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Petri nets in Snoopy: a unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks.
    Marwan W; Rohr C; Heiner M
    Methods Mol Biol; 2012; 804():409-37. PubMed ID: 22144165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The EcoCyc Database.
    Karp PD; Ong WK; Paley S; Billington R; Caspi R; Fulcher C; Kothari A; Krummenacker M; Latendresse M; Midford PE; Subhraveti P; Gama-Castro S; Muñiz-Rascado L; Bonavides-Martinez C; Santos-Zavaleta A; Mackie A; Collado-Vides J; Keseler IM; Paulsen I
    EcoSal Plus; 2018 Nov; 8(1):. PubMed ID: 30406744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-scale metabolic network reconstructions of diverse
    Monk JM
    Philos Trans R Soc Lond B Biol Sci; 2022 Oct; 377(1861):20210236. PubMed ID: 35989599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GEMSiRV: a software platform for GEnome-scale metabolic model simulation, reconstruction and visualization.
    Liao YC; Tsai MH; Chen FC; Hsiung CA
    Bioinformatics; 2012 Jul; 28(13):1752-8. PubMed ID: 22563070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iAK692: a genome-scale metabolic model of Spirulina platensis C1.
    Klanchui A; Khannapho C; Phodee A; Cheevadhanarak S; Meechai A
    BMC Syst Biol; 2012 Jun; 6():71. PubMed ID: 22703714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. lumpGEM: Systematic generation of subnetworks and elementally balanced lumped reactions for the biosynthesis of target metabolites.
    Ataman M; Hatzimanikatis V
    PLoS Comput Biol; 2017 Jul; 13(7):e1005513. PubMed ID: 28727789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.