These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 29040432)

  • 1. Machine learning accelerates MD-based binding pose prediction between ligands and proteins.
    Terayama K; Iwata H; Araki M; Okuno Y; Tsuda K
    Bioinformatics; 2018 Mar; 34(5):770-778. PubMed ID: 29040432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations: A Cross-docking Study.
    Liu K; Kokubo H
    J Chem Inf Model; 2017 Oct; 57(10):2514-2522. PubMed ID: 28902511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations.
    Liu K; Watanabe E; Kokubo H
    J Comput Aided Mol Des; 2017 Feb; 31(2):201-211. PubMed ID: 28074360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking.
    Chen F; Liu H; Sun H; Pan P; Li Y; Li D; Hou T
    Phys Chem Chem Phys; 2016 Aug; 18(32):22129-39. PubMed ID: 27444142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic generation of bioinformatics tools for predicting protein-ligand binding sites.
    Komiyama Y; Banno M; Ueki K; Saad G; Shimizu K
    Bioinformatics; 2016 Mar; 32(6):901-7. PubMed ID: 26545824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. evERdock BAI: Machine-learning-guided selection of protein-protein complex structure.
    Terayama K; Shinobu A; Tsuda K; Takemura K; Kitao A
    J Chem Phys; 2019 Dec; 151(21):215104. PubMed ID: 31822094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of the MM/GBSA method in the binding pose prediction of FGFR inhibitors.
    Chen Y; Zheng Y; Fong P; Mao S; Wang Q
    Phys Chem Chem Phys; 2020 May; 22(17):9656-9663. PubMed ID: 32328599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein-peptide complexes.
    Weng G; Wang E; Chen F; Sun H; Wang Z; Hou T
    Phys Chem Chem Phys; 2019 May; 21(19):10135-10145. PubMed ID: 31062799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.
    Fukunishi Y
    Curr Top Med Chem; 2010; 10(6):680-94. PubMed ID: 20337587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling.
    Bhakat S; Åberg E; Söderhjelm P
    J Comput Aided Mol Des; 2018 Jan; 32(1):59-73. PubMed ID: 29052792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LiGRO: a graphical user interface for protein-ligand molecular dynamics.
    Kagami LP; das Neves GM; da Silva AWS; Caceres RA; Kawano DF; Eifler-Lima VL
    J Mol Model; 2017 Oct; 23(11):304. PubMed ID: 28980073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MDFit: automated molecular simulations workflow enables high throughput assessment of ligands-protein dynamics.
    Brueckner AC; Shields B; Kirubakaran P; Suponya A; Panda M; Posy SL; Johnson S; Lakkaraju SK
    J Comput Aided Mol Des; 2024 Jul; 38(1):24. PubMed ID: 39014286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of ligand binding mode among multiple cross-docking poses by molecular dynamics simulations.
    Liu K; Kokubo H
    J Comput Aided Mol Des; 2020 Nov; 34(11):1195-1205. PubMed ID: 32869148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Binding Free Energy Method from End-State MD Simulations.
    Akkus E; Tayfuroglu O; Yildiz M; Kocak A
    J Chem Inf Model; 2022 Sep; 62(17):4095-4106. PubMed ID: 35972783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulation and Prediction of Druggable Binding Sites.
    Feng T; Barakat K
    Methods Mol Biol; 2018; 1762():87-103. PubMed ID: 29594769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods.
    Wang Z; Wang X; Li Y; Lei T; Wang E; Li D; Kang Y; Zhu F; Hou T
    Bioinformatics; 2019 May; 35(10):1777-1779. PubMed ID: 30329012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.