BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 29040432)

  • 1. Machine learning accelerates MD-based binding pose prediction between ligands and proteins.
    Terayama K; Iwata H; Araki M; Okuno Y; Tsuda K
    Bioinformatics; 2018 Mar; 34(5):770-778. PubMed ID: 29040432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations: A Cross-docking Study.
    Liu K; Kokubo H
    J Chem Inf Model; 2017 Oct; 57(10):2514-2522. PubMed ID: 28902511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations.
    Liu K; Watanabe E; Kokubo H
    J Comput Aided Mol Des; 2017 Feb; 31(2):201-211. PubMed ID: 28074360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking.
    Chen F; Liu H; Sun H; Pan P; Li Y; Li D; Hou T
    Phys Chem Chem Phys; 2016 Aug; 18(32):22129-39. PubMed ID: 27444142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic generation of bioinformatics tools for predicting protein-ligand binding sites.
    Komiyama Y; Banno M; Ueki K; Saad G; Shimizu K
    Bioinformatics; 2016 Mar; 32(6):901-7. PubMed ID: 26545824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. evERdock BAI: Machine-learning-guided selection of protein-protein complex structure.
    Terayama K; Shinobu A; Tsuda K; Takemura K; Kitao A
    J Chem Phys; 2019 Dec; 151(21):215104. PubMed ID: 31822094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of the MM/GBSA method in the binding pose prediction of FGFR inhibitors.
    Chen Y; Zheng Y; Fong P; Mao S; Wang Q
    Phys Chem Chem Phys; 2020 May; 22(17):9656-9663. PubMed ID: 32328599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein-peptide complexes.
    Weng G; Wang E; Chen F; Sun H; Wang Z; Hou T
    Phys Chem Chem Phys; 2019 May; 21(19):10135-10145. PubMed ID: 31062799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.
    Fukunishi Y
    Curr Top Med Chem; 2010; 10(6):680-94. PubMed ID: 20337587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling.
    Bhakat S; Åberg E; Söderhjelm P
    J Comput Aided Mol Des; 2018 Jan; 32(1):59-73. PubMed ID: 29052792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LiGRO: a graphical user interface for protein-ligand molecular dynamics.
    Kagami LP; das Neves GM; da Silva AWS; Caceres RA; Kawano DF; Eifler-Lima VL
    J Mol Model; 2017 Oct; 23(11):304. PubMed ID: 28980073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of ligand binding mode among multiple cross-docking poses by molecular dynamics simulations.
    Liu K; Kokubo H
    J Comput Aided Mol Des; 2020 Nov; 34(11):1195-1205. PubMed ID: 32869148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Binding Free Energy Method from End-State MD Simulations.
    Akkus E; Tayfuroglu O; Yildiz M; Kocak A
    J Chem Inf Model; 2022 Sep; 62(17):4095-4106. PubMed ID: 35972783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Dynamics Simulation and Prediction of Druggable Binding Sites.
    Feng T; Barakat K
    Methods Mol Biol; 2018; 1762():87-103. PubMed ID: 29594769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods.
    Wang Z; Wang X; Li Y; Lei T; Wang E; Li D; Kang Y; Zhu F; Hou T
    Bioinformatics; 2019 May; 35(10):1777-1779. PubMed ID: 30329012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning?
    Gu S; Shen C; Yu J; Zhao H; Liu H; Liu L; Sheng R; Xu L; Wang Z; Hou T; Kang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36681903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.