These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 29040458)
1. Orchestration of the mammalian host cell glucose transporter proteins-1 and 3 by Chlamydia contributes to intracellular growth and infectivity. Wang X; Hybiske K; Stephens RS Pathog Dis; 2017 Nov; 75(8):. PubMed ID: 29040458 [TBL] [Abstract][Full Text] [Related]
2. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis. Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221 [TBL] [Abstract][Full Text] [Related]
3. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane. Olson MG; Ouellette SP; Rucks EA J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040 [TBL] [Abstract][Full Text] [Related]
4. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins. Moore ER; Ouellette SP Front Cell Infect Microbiol; 2014; 4():157. PubMed ID: 25401095 [TBL] [Abstract][Full Text] [Related]
6. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins. Andersen SE; Bulman LM; Steiert B; Faris R; Weber MM Pathog Dis; 2021 Feb; 79(2):. PubMed ID: 33512479 [TBL] [Abstract][Full Text] [Related]
11. Development of a Proximity Labeling System to Map the Rucks EA; Olson MG; Jorgenson LM; Srinivasan RR; Ouellette SP Front Cell Infect Microbiol; 2017; 7():40. PubMed ID: 28261569 [No Abstract] [Full Text] [Related]
12. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites. Dickinson MS; Anderson LN; Webb-Robertson BM; Hansen JR; Smith RD; Wright AT; Hybiske K PLoS Pathog; 2019 Apr; 15(4):e1007698. PubMed ID: 30943267 [TBL] [Abstract][Full Text] [Related]
13. The Human Centrosomal Protein CCDC146 Binds Almeida F; Luís MP; Pereira IS; Pais SV; Mota LJ Front Cell Infect Microbiol; 2018; 8():254. PubMed ID: 30094225 [No Abstract] [Full Text] [Related]
14. Inhibition of Wnt Signaling Pathways Impairs Kintner J; Moore CG; Whittimore JD; Butler M; Hall JV Front Cell Infect Microbiol; 2017; 7():501. PubMed ID: 29322031 [No Abstract] [Full Text] [Related]
15. Host and Bacterial Glycolysis during Ende RJ; Derré I Infect Immun; 2020 Nov; 88(12):. PubMed ID: 32900818 [TBL] [Abstract][Full Text] [Related]
16. Using Fluorescent Proteins to Visualize and Quantitate Chlamydia Vacuole Growth Dynamics in Living Cells. Zuck M; Feng C; Hybiske K J Vis Exp; 2015 Oct; (104):. PubMed ID: 26484535 [TBL] [Abstract][Full Text] [Related]
17. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication. Capmany A; Damiani MT PLoS One; 2010 Nov; 5(11):e14084. PubMed ID: 21124879 [TBL] [Abstract][Full Text] [Related]
20. Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles. Yasir M; Pachikara ND; Bao X; Pan Z; Fan H Infect Immun; 2011 Oct; 79(10):4019-28. PubMed ID: 21807906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]