These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 29040458)

  • 1. Orchestration of the mammalian host cell glucose transporter proteins-1 and 3 by Chlamydia contributes to intracellular growth and infectivity.
    Wang X; Hybiske K; Stephens RS
    Pathog Dis; 2017 Nov; 75(8):. PubMed ID: 29040458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The trans-Golgi SNARE syntaxin 10 is required for optimal development of Chlamydia trachomatis.
    Lucas AL; Ouellette SP; Kabeiseman EJ; Cichos KH; Rucks EA
    Front Cell Infect Microbiol; 2015; 5():68. PubMed ID: 26442221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins.
    Moore ER; Ouellette SP
    Front Cell Infect Microbiol; 2014; 4():157. PubMed ID: 25401095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adult neural stem cells express glucose transporters GLUT1 and GLUT3 and regulate GLUT3 expression.
    Maurer MH; Geomor HK; Bürgers HF; Schelshorn DW; Kuschinsky W
    FEBS Lett; 2006 Aug; 580(18):4430-4. PubMed ID: 16854415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins.
    Andersen SE; Bulman LM; Steiert B; Faris R; Weber MM
    Pathog Dis; 2021 Feb; 79(2):. PubMed ID: 33512479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eukaryotic SNARE VAMP3 Dynamically Interacts with Multiple Chlamydial Inclusion Membrane Proteins.
    Bui DC; Jorgenson LM; Ouellette SP; Rucks EA
    Infect Immun; 2021 Jan; 89(2):. PubMed ID: 33229367
    [No Abstract]   [Full Text] [Related]  

  • 8. The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion.
    Auer D; Hügelschäffer SD; Fischer AB; Rudel T
    Cell Microbiol; 2020 May; 22(5):e13136. PubMed ID: 31677225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis.
    Subbarayal P; Karunakaran K; Winkler AC; Rother M; Gonzalez E; Meyer TF; Rudel T
    PLoS Pathog; 2015 Apr; 11(4):e1004846. PubMed ID: 25906164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safe haven under constant attack-The Chlamydia-containing vacuole.
    Fischer A; Rudel T
    Cell Microbiol; 2018 Oct; 20(10):e12940. PubMed ID: 30101516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Proximity Labeling System to Map the
    Rucks EA; Olson MG; Jorgenson LM; Srinivasan RR; Ouellette SP
    Front Cell Infect Microbiol; 2017; 7():40. PubMed ID: 28261569
    [No Abstract]   [Full Text] [Related]  

  • 12. Proximity-dependent proteomics of the Chlamydia trachomatis inclusion membrane reveals functional interactions with endoplasmic reticulum exit sites.
    Dickinson MS; Anderson LN; Webb-Robertson BM; Hansen JR; Smith RD; Wright AT; Hybiske K
    PLoS Pathog; 2019 Apr; 15(4):e1007698. PubMed ID: 30943267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Human Centrosomal Protein CCDC146 Binds
    Almeida F; Luís MP; Pereira IS; Pais SV; Mota LJ
    Front Cell Infect Microbiol; 2018; 8():254. PubMed ID: 30094225
    [No Abstract]   [Full Text] [Related]  

  • 14. Inhibition of Wnt Signaling Pathways Impairs
    Kintner J; Moore CG; Whittimore JD; Butler M; Hall JV
    Front Cell Infect Microbiol; 2017; 7():501. PubMed ID: 29322031
    [No Abstract]   [Full Text] [Related]  

  • 15. Host and Bacterial Glycolysis during
    Ende RJ; Derré I
    Infect Immun; 2020 Nov; 88(12):. PubMed ID: 32900818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Fluorescent Proteins to Visualize and Quantitate Chlamydia Vacuole Growth Dynamics in Living Cells.
    Zuck M; Feng C; Hybiske K
    J Vis Exp; 2015 Oct; (104):. PubMed ID: 26484535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication.
    Capmany A; Damiani MT
    PLoS One; 2010 Nov; 5(11):e14084. PubMed ID: 21124879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Chlamydia effector recruits CEP170 to reprogram host microtubule organization.
    Dumoux M; Menny A; Delacour D; Hayward RD
    J Cell Sci; 2015 Sep; 128(18):3420-34. PubMed ID: 26220855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptidase Inhibitor 15 (PI15) Regulates Chlamydial CPAF Activity.
    Prusty BK; Chowdhury SR; Gulve N; Rudel T
    Front Cell Infect Microbiol; 2018; 8():183. PubMed ID: 29900129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles.
    Yasir M; Pachikara ND; Bao X; Pan Z; Fan H
    Infect Immun; 2011 Oct; 79(10):4019-28. PubMed ID: 21807906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.