These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 29040802)

  • 1. Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes.
    Pugliese P; Conde MM; Rovere M; Gallo P
    J Phys Chem B; 2017 Nov; 121(45):10371-10381. PubMed ID: 29040802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of Formation of 1-10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries.
    Liu Y; Jiang J; Pu Y; Francisco JS; Zeng XC
    ACS Nano; 2023 Apr; 17(7):6922-6931. PubMed ID: 36940168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of proton-ordered water confined in low-diameter carbon nanotubes.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2015 Mar; 17(11):7303-16. PubMed ID: 25698066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of ordered ice nanotubes inside carbon nanotubes.
    Koga K; Gao GT; Tanaka H; Zeng XC
    Nature; 2001 Aug; 412(6849):802-5. PubMed ID: 11518961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes.
    Agrawal KV; Shimizu S; Drahushuk LW; Kilcoyne D; Strano MS
    Nat Nanotechnol; 2017 Mar; 12(3):267-273. PubMed ID: 27893731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confined water inside single-walled carbon nanotubes: global phase diagram and effect of finite length.
    Kyakuno H; Matsuda K; Yahiro H; Inami Y; Fukuoka T; Miyata Y; Yanagi K; Maniwa Y; Kataura H; Saito T; Yumura M; Iijima S
    J Chem Phys; 2011 Jun; 134(24):244501. PubMed ID: 21721637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase diagram of water in carbon nanotubes.
    Takaiwa D; Hatano I; Koga K; Tanaka H
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):39-43. PubMed ID: 18162549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel ice structures in carbon nanopores: pressure enhancement effect of confinement.
    Jazdzewska M; Sliwinska-Bartkowiak MM; Beskrovnyy AI; Vasilovskiy SG; Ting SW; Chan KY; Huang L; Gubbins KE
    Phys Chem Chem Phys; 2011 May; 13(19):9008-13. PubMed ID: 21451863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the time required to freeze water.
    Espinosa JR; Navarro C; Sanz E; Valeriani C; Vega C
    J Chem Phys; 2016 Dec; 145(21):211922. PubMed ID: 28799362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes.
    Raju M; van Duin A; Ihme M
    Sci Rep; 2018 Mar; 8(1):3851. PubMed ID: 29497132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melting behavior of water in cylindrical pores: carbon nanotubes and silica glasses.
    Sliwinska-Bartkowiak M; Jazdzewska M; Huang LL; Gubbins KE
    Phys Chem Chem Phys; 2008 Aug; 10(32):4909-19. PubMed ID: 18688535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glassy dynamics of water in TIP4P/Ice aqueous solutions of trehalose in comparison with the bulk phase.
    Lupi L; Gallo P
    J Chem Phys; 2023 Oct; 159(15):. PubMed ID: 37850697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric properties of water inside single-walled carbon nanotubes.
    Mikami F; Matsuda K; Kataura H; Maniwa Y
    ACS Nano; 2009 May; 3(5):1279-87. PubMed ID: 19385604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Close-Packed Ices in Nanopores.
    Mochizuki K; Adachi Y; Koga K
    ACS Nano; 2024 Jan; 18(1):347-354. PubMed ID: 38109520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics of zigzag single walled carbon nanotube immersion in water.
    Gauden PA; Terzyk AP; Pieńkowski R; Furmaniak S; Wesołowski RP; Kowalczyk P
    Phys Chem Chem Phys; 2011 Apr; 13(13):5621-9. PubMed ID: 21301707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental study of melting of CCl4 in carbon nanotubes.
    Jazdzewska M; Hung FR; Gubbins KE; Sliwinska-Bartkowiak M
    Phys Chem Chem Phys; 2005 Nov; 7(22):3884-7. PubMed ID: 16358040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation study of structural, transport, and thermodynamic properties of TIP4P/2005 water in single-walled carbon nanotubes.
    Guse C; Hentschke R
    J Phys Chem B; 2012 Jan; 116(2):751-62. PubMed ID: 22171918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.