These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29040916)

  • 1. Versatile on-stage microfluidic system for long term cell culture, micromanipulation and time lapse assays.
    Huang YX; He CL; Wang P; Pan YT; Tuo WW; Yao CC
    Biosens Bioelectron; 2018 Mar; 101():66-74. PubMed ID: 29040916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic platform for 3-dimensional cell culture and cell-based assays.
    Kim MS; Yeon JH; Park JK
    Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IR-Live: fabrication of a low-cost plastic microfluidic device for infrared spectromicroscopy of living cells.
    Birarda G; Ravasio A; Suryana M; Maniam S; Holman HN; Grenci G
    Lab Chip; 2016 Apr; 16(9):1644-1651. PubMed ID: 27040369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CellClamper: A Convenient Microfluidic Device for Time-Lapse Imaging of Yeast.
    Schmidt GW; Frey O; Rudolf F
    Methods Mol Biol; 2018; 1672():537-555. PubMed ID: 29043647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. External force-assisted cell positioning inside microfluidic devices.
    Rhee SW; Taylor AM; Cribbs DH; Cotman CW; Jeon NL
    Biomed Microdevices; 2007 Feb; 9(1):15-23. PubMed ID: 17091393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of
    Pilát Z; Bernatová S; Ježek J; Kirchhoff J; Tannert A; Neugebauer U; Samek O; Zemánek P
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29783713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic assay-based optical measurement techniques for cell analysis: A review of recent progress.
    Choi JR; Song H; Sung JH; Kim D; Kim K
    Biosens Bioelectron; 2016 Mar; 77():227-36. PubMed ID: 26409023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging.
    Vickerman V; Blundo J; Chung S; Kamm R
    Lab Chip; 2008 Sep; 8(9):1468-77. PubMed ID: 18818801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic cell array with individually addressable culture chambers.
    Wang HY; Bao N; Lu C
    Biosens Bioelectron; 2008 Dec; 24(4):613-7. PubMed ID: 18635348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip.
    Lei KF; Wu MH; Hsu CW; Chen YD
    Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets.
    Hufnagel H; Huebner A; Gülch C; Güse K; Abell C; Hollfelder F
    Lab Chip; 2009 Jun; 9(11):1576-82. PubMed ID: 19458865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially selecting a single cell for lysis using light-induced electric fields.
    Witte C; Kremer C; Chanasakulniyom M; Reboud J; Wilson R; Cooper JM; Neale SL
    Small; 2014 Aug; 10(15):3026-31. PubMed ID: 24719234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-lapse lens-free imaging of cell migration in diverse physical microenvironments.
    Mathieu E; Paul CD; Stahl R; Vanmeerbeeck G; Reumers V; Liu C; Konstantopoulos K; Lagae L
    Lab Chip; 2016 Aug; 16(17):3304-16. PubMed ID: 27436197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple microfluidic method to select, isolate, and manipulate single-cells in mechanical and biochemical assays.
    Gabriele S; Versaevel M; Preira P; Théodoly O
    Lab Chip; 2010 Jun; 10(11):1459-67. PubMed ID: 20480111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular aggregate capture by fluidic manipulation device highly compatible with micro-well-plates.
    Konishi S; Teramachi Y; Shimomura S; Tonomura W; Tajima S; Tabata Y
    Biomed Microdevices; 2015; 17(3):9953. PubMed ID: 25846275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrotaxis of lung cancer cells in a multiple-electric-field chip.
    Huang CW; Cheng JY; Yen MH; Young TH
    Biosens Bioelectron; 2009 Aug; 24(12):3510-6. PubMed ID: 19497728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices.
    Chen H; Sun J; Wolvetang E; Cooper-White J
    Lab Chip; 2015 Feb; 15(4):1072-83. PubMed ID: 25519528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics.
    Hernández Vera R; Schwan E; Fatsis-Kavalopoulos N; Kreuger J
    PLoS One; 2016; 11(12):e0167583. PubMed ID: 28002463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D arrays for high throughput assay of cell migration and electrotaxis.
    Zhao S; Gao R; Devreotes PN; Mogilner A; Zhao M
    Cell Biol Int; 2013 Sep; 37(9):995-1002. PubMed ID: 23589440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biology on a chip: microfabrication for studying the behavior of cultured cells.
    Li N; Tourovskaia A; Folch A
    Crit Rev Biomed Eng; 2003; 31(5-6):423-88. PubMed ID: 15139302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.