These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 29041055)

  • 1. Fano resonances in plasmonic heptamer nano-hole arrays.
    Hajebifard A; Berini P
    Opt Express; 2017 Aug; 25(16):18566-18580. PubMed ID: 29041055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-sensitivity plasmonic sensor by narrowing Fano resonances in a tilted metallic nano-groove array.
    Jia S; Li Z; Chen J
    Opt Express; 2021 Jul; 29(14):21358-21368. PubMed ID: 34265925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system.
    Li S; Wang Y; Jiao R; Wang L; Duan G; Yu L
    Opt Express; 2017 Feb; 25(4):3525-3533. PubMed ID: 28241566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances.
    Lin L; Roberts A
    Opt Express; 2011 Jan; 19(3):2626-33. PubMed ID: 21369083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing.
    Zhan Y; Lei DY; Li X; Maier SA
    Nanoscale; 2014 May; 6(9):4705-15. PubMed ID: 24658052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films.
    Chang SH; Gray S; Schatz G
    Opt Express; 2005 Apr; 13(8):3150-65. PubMed ID: 19495214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings.
    Liu SD; Yang Z; Liu RP; Li XY
    ACS Nano; 2012 Jul; 6(7):6260-71. PubMed ID: 22680404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive Terahertz Biosensors Based on Fano Resonance of a Graphene/Waveguide Hybrid Structure.
    Ruan B; Guo J; Wu L; Zhu J; You Q; Dai X; Xiang Y
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28825677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays.
    Lee KL; Huang JB; Chang JW; Wu SH; Wei PK
    Sci Rep; 2015 Feb; 5():8547. PubMed ID: 25708955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning Multiple Fano Resonances for On-Chip Sensors in a Plasmonic System.
    Yu S; Zhao T; Yu J; Pan D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays.
    Gao H; McMahon JM; Lee MH; Henzie J; Gray SK; Schatz GC; Odom TW
    Opt Express; 2009 Feb; 17(4):2334-40. PubMed ID: 19219136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing.
    Liang Y; Peng W; Li L; Qian S; Wang Q
    Opt Lett; 2015 Aug; 40(16):3909-12. PubMed ID: 26274691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum.
    Ahmadivand A; Pala N
    J Opt Soc Am A Opt Image Sci Vis; 2015 Feb; 32(2):204-12. PubMed ID: 26366591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation.
    Zhang S; Li GC; Chen Y; Zhu X; Liu SD; Lei DY; Duan H
    ACS Nano; 2016 Dec; 10(12):11105-11114. PubMed ID: 28024358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring Fano lineshapes using plasmonic nanobars for highly sensitive sensing and directional emission.
    Li G; Hu H; Wu L
    Phys Chem Chem Phys; 2018 Dec; 21(1):252-259. PubMed ID: 30519701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers.
    Rahmani M; Lukiyanchuk B; Ng B; Tavakkoli K G A; Liew YF; Hong MH
    Opt Express; 2011 Mar; 19(6):4949-56. PubMed ID: 21445130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical-fibre characteristics based on Fano resonances and sensor application in blood glucose detection.
    Zhu J; Yin J
    Opt Express; 2022 Jul; 30(15):26749-26760. PubMed ID: 36236861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices.
    Forcherio GT; Blake P; DeJarnette D; Roper DK
    Opt Express; 2014 Jul; 22(15):17791-803. PubMed ID: 25089400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanorod orientation dependence of tunable Fano resonance in plasmonic nanorod heptamers.
    Tamma VA; Cui Y; Zhou J; Park W
    Nanoscale; 2013 Feb; 5(4):1592-602. PubMed ID: 23329115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double Narrow Fano Resonances via Diffraction Coupling of Magnetic Plasmon Resonances in Embedded 3D Metamaterials for High-Quality Sensing.
    Hu H; Lu X; Huang J; Chen K; Su J; Yan Z; Tang C; Cai P
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.