These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29041075)

  • 1. Understanding the effects of groove structures on the MTF.
    Liang K; Alonso MA
    Opt Express; 2017 Aug; 25(16):18827-18841. PubMed ID: 29041075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Minimum Modulation Curve as a tool for specifying optical performance: application to surfaces with mid-spatial frequency errors.
    Aryan H; Boreman GD; Suleski TJ
    Opt Express; 2019 Sep; 27(18):25551-25559. PubMed ID: 31510426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects on the OTF of MSF structures with random variations.
    Liang K; Alonso MA
    Opt Express; 2019 Nov; 27(24):34665-34680. PubMed ID: 31878653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pupil-difference moments for estimating relative modulation from general mid-spatial frequency surface errors.
    DeMars LA; Suleski TJ
    Opt Lett; 2023 May; 48(9):2492-2495. PubMed ID: 37126307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machining approach of freeform optics on infrared materials via ultra-precision turning.
    Li Z; Fang F; Chen J; Zhang X
    Opt Express; 2017 Feb; 25(3):2051-2062. PubMed ID: 29519053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of pupil-difference moments for predicting optical performance impacts of generalized mid-spatial frequency surface errors.
    DeMars LA; Suleski TJ
    Opt Express; 2023 Oct; 31(22):36337-36349. PubMed ID: 38017788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive models for the Strehl ratio of diamond-machined optics.
    Aryan H; Liang K; Alonso MA; Suleski TJ
    Appl Opt; 2019 Apr; 58(12):3272-3276. PubMed ID: 31044807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Starting configuration design method of freeform imaging and afocal systems with a real exit pupil.
    Yang T; Zhu J; Jin G
    Appl Opt; 2016 Jan; 55(2):345-53. PubMed ID: 26835771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple methods for estimating the performance and specification of optical components with anisotropic mid-spatial frequency surface errors.
    Aryan H; Boreman GD; Suleski TJ
    Opt Express; 2019 Oct; 27(22):32709-32721. PubMed ID: 31684478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique.
    Shen Z; Yu J; Song Z; Chen L; Yuan Q; Gao Z; Pei S; Liu B; Ye J
    Appl Opt; 2019 Mar; 58(9):2269-2276. PubMed ID: 31044929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Description and reimplementation of real freeform surfaces.
    Stock J; Broemel A; Hartung J; Ochse D; Gross H
    Appl Opt; 2017 Jan; 56(3):391-396. PubMed ID: 28157891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angular resolved power spectral density analysis for improving mirror manufacturing.
    Pertermann T; Hartung J; Beier M; Trost M; Schröder S; Risse S; Eberhardt R; Tünnermann A; Gross H
    Appl Opt; 2018 Oct; 57(29):8692-8698. PubMed ID: 30461945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mid-frequency MTF compensation of optical sparse aperture system.
    Zhou C; Wang Z
    Opt Express; 2018 Mar; 26(6):6973-6992. PubMed ID: 29609383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of modulation transfer function artifacts due to mid-spatial-frequency errors and its application to optical tolerancing.
    Tamkin JM; Milster TD; Dallas W
    Appl Opt; 2010 Sep; 49(25):4825-35. PubMed ID: 20820226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MTF improvement for optical synthetic aperture system via mid-frequency compensation.
    Wu Y; Hui M; Li W; Liu M; Dong L; Kong L; Zhao Y
    Opt Express; 2021 Mar; 29(7):10249-10264. PubMed ID: 33820165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of the line-pair bar-pattern method in the measurement of the modulation transfer function (MTF) in megavoltage imaging.
    Gopal A; Samant SS
    Med Phys; 2008 Jan; 35(1):270-9. PubMed ID: 18293582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of an algorithm for the assessment of the MTF using an edge method.
    Greer PB; van Doorn T
    Med Phys; 2000 Sep; 27(9):2048-59. PubMed ID: 11011732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized Golay-9 array configurations for mid-frequency compensation in optical sparse aperture systems.
    Hui M; Zhang H; Wu Y; Li X; Liu M; Dong L; Kong L; Zhao Y
    Appl Opt; 2021 Sep; 60(26):8120-8129. PubMed ID: 34613075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for determining the modulation transfer function from thick microwire profiles measured with x-ray microcomputed tomography.
    Nakaya Y; Kawata Y; Niki N; Umetatni K; Ohmatsu H; Moriyama N
    Med Phys; 2012 Jul; 39(7):4347-64. PubMed ID: 22830768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple parametric model of the human ocular modulation transfer function.
    Deeley RJ; Drasdo N; Charman WN
    Ophthalmic Physiol Opt; 1991 Jan; 11(1):91-3. PubMed ID: 2034461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.