BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29041097)

  • 1. Enhancing the signal-to-noise ratio of FTIR spectrometers by a digital J-Stop.
    Wang H; Ma X; Wang Y; Chen D; Chen W; Li Q
    Opt Express; 2017 Aug; 25(16):19077-19082. PubMed ID: 29041097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolution- and throughput-enhanced spectroscopy using a high-throughput computational slit.
    Kazemzadeh F; Wong A
    Opt Lett; 2016 Sep; 41(18):4352-5. PubMed ID: 27628395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singlet oxygen luminescence spectra: a comparison of interferometer- and grating-based spectrometers.
    Wessels JM; Charlesworth P; Rodgers MA
    Photochem Photobiol; 1995 Apr; 61(4):350-2. PubMed ID: 7740077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution on-chip Fourier transform spectrometer based on cascaded optical switches.
    Du J; Zhang H; Wang X; Xu W; Lu L; Chen J; Zhou L
    Opt Lett; 2022 Jan; 47(2):218-221. PubMed ID: 35030571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grating Spectrometry and Spatial Heterodyne Fourier Transform Spectrometry: Comparative Noise Analysis for Raman Measurements.
    Ciaffoni L; Matousek P; Parker W; McCormack EA; Mortimer H
    Appl Spectrosc; 2021 Mar; 75(3):241-249. PubMed ID: 33044086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances.
    Banas K; Banas AM; Heussler SP; Breese MBH
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():106-112. PubMed ID: 28704804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoregressive superresolution microelectromechanical systems Fourier transform spectrometer.
    Samir I; Sabry YM; Fathy A; Ghoname AO; Badra N; Khalil DA
    Appl Opt; 2019 Sep; 58(25):6784-6790. PubMed ID: 31503646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip parallel Fourier transform spectrometer for broadband selective infrared spectral sensing.
    Fathy A; Sabry YM; Nazeer S; Bourouina T; Khalil DA
    Microsyst Nanoeng; 2020; 6():10. PubMed ID: 34567625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier-transform infrared derivative spectroscopy with an improved signal-to-noise ratio.
    Fetterman MR
    Opt Lett; 2005 Sep; 30(17):2311-3. PubMed ID: 16190454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the resolution and the throughput of spectrometers by a digital projection slit.
    Ma X; Wang H; Wang Y; Chen D; Chen W; Li Q
    Opt Express; 2017 Sep; 25(19):23045-23050. PubMed ID: 29041608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of spectral resolution and signal-to-noise ratio of hyperspectral sensors on retrieving atmospheric parameters.
    Liu Q; Xiao S
    Opt Lett; 2014 Jan; 39(1):60-3. PubMed ID: 24365822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research of spectrum signal-to-noise ratio of large aperture static imaging spectrometer].
    Wang S; Li LB; Pi HF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):851-6. PubMed ID: 25208427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lamellar grating optimization for miniaturized fourier transform spectrometers.
    Ferhanoglu O; Seren HR; Lüttjohann S; Urey H
    Opt Express; 2009 Nov; 17(23):21289-301. PubMed ID: 19997368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance and scalable on-chip digital Fourier transform spectroscopy.
    Kita DM; Miranda B; Favela D; Bono D; Michon J; Lin H; Gu T; Hu J
    Nat Commun; 2018 Oct; 9(1):4405. PubMed ID: 30353014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Birefringent Fourier-transform imaging spectrometer.
    Harvey A; Fletcher-Holmes D
    Opt Express; 2004 Nov; 12(22):5368-74. PubMed ID: 19484098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state digital micro-mirror array spectrometer for Hadamard transform measurements of glucose and lactate in aqueous solutions.
    Xiang D; Arnold MA
    Appl Spectrosc; 2011 Oct; 65(10):1170-80. PubMed ID: 21986077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable integrated two-dimensional Fourier-transform spectrometry.
    Xu H; Qin Y; Hu G; Tsang HK
    Nat Commun; 2024 Jan; 15(1):436. PubMed ID: 38200000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison of dispersion parts of conventional spectrometers].
    Yang HD; Chen KX; Huang XY; He QS; Jin GF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1707-12. PubMed ID: 19810566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration and spectral recovery of mid-infrared chemical images.
    Mattson EC; Nasse MJ; Rak M; Gough KM; Hirschmugl CJ
    Anal Chem; 2012 Jul; 84(14):6173-80. PubMed ID: 22732086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instrumental phase-based method for Fourier transform spectrometer measurements processing.
    Saggin B; Scaccabarozzi D; Tarabini M
    Appl Opt; 2011 Apr; 50(12):1717-25. PubMed ID: 21509063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.