These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29041183)

  • 1. Enhancement of higher-order plasmonic modes in a dense array of split-ring resonators.
    Seliuta D; Šlekas G; Vaitkūnas A; Kancleris Ž; Valušis G
    Opt Express; 2017 Oct; 25(21):25113-25124. PubMed ID: 29041183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance modes in stereometamaterial of square split ring resonators connected by sharing the gap.
    Wang SL; Xiao JJ; Zhang Q; Zhang XM
    Opt Express; 2014 Oct; 22(20):24358-66. PubMed ID: 25322011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study.
    Wallauer J; Bitzer A; Waselikowski S; Walther M
    Opt Express; 2011 Aug; 19(18):17283-92. PubMed ID: 21935092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating Fundamental Resonance in Capacitive Coupled Asymmetric Terahertz Metamaterials.
    Rao SJM; Srivastava YK; Kumar G; Roy Chowdhury D
    Sci Rep; 2018 Nov; 8(1):16773. PubMed ID: 30425280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sensitive and selective terahertz sensor for the fingerprint detection of lactose.
    Han B; Han Z; Qin J; Wang Y; Zhao Z
    Talanta; 2019 Jan; 192():1-5. PubMed ID: 30348363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extremely high Q-factor terahertz metasurface using reconstructive coherent mode resonance.
    Yan F; Li Q; Wang Z; Tian H; Li L
    Opt Express; 2021 Mar; 29(5):7015-7023. PubMed ID: 33726211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials.
    Chen J; Mao P; Xu R; Tang C; Liu Y; Wang Q; Zhang L
    Opt Express; 2015 Jun; 23(12):16238-45. PubMed ID: 26193596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs).
    Lahiri B; McMeekin SG; De la Rue RM; Johnson NP
    Opt Express; 2013 Apr; 21(8):9343-52. PubMed ID: 23609645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities.
    Zhang Q; Wen X; Li G; Ruan Q; Wang J; Xiong Q
    ACS Nano; 2013 Dec; 7(12):11071-8. PubMed ID: 24215162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials.
    Yang S; Tang C; Liu Z; Wang B; Wang C; Li J; Wang L; Gu C
    Opt Express; 2017 Jul; 25(14):15938-15946. PubMed ID: 28789104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlative electron energy loss spectroscopy and cathodoluminescence spectroscopy on three-dimensional plasmonic split ring resonators.
    Bicket IC; Bellido EP; Meuret S; Polman A; Botton GA
    Microscopy (Oxf); 2018 Mar; 67(suppl_1):i40-i51. PubMed ID: 29584929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon coupling in vertical split-ring resonator metamolecules.
    Wu PC; Hsu WL; Chen WT; Huang YW; Liao CY; Liu AQ; Zheludev NI; Sun G; Tsai DP
    Sci Rep; 2015 Jun; 5():9726. PubMed ID: 26043931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano resonance arising due to direct interaction of plasmonic and lattice modes in a mirrored array of split ring resonators.
    Seliuta D; Šlekas G; Valušis G; Kancleris Ž
    Opt Lett; 2019 Feb; 44(4):759-762. PubMed ID: 30767980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-gap individual and coupled split-ring resonator structures.
    Penciu RS; Aydin K; Kafesaki M; Koschny T; Ozbay E; Economou EN; Soukoulis CM
    Opt Express; 2008 Oct; 16(22):18131-44. PubMed ID: 18958091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
    Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC
    Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of three dimensional split ring resonators by stress-driven assembly method.
    Chen CC; Hsiao CT; Sun S; Yang KY; Wu PC; Chen WT; Tang YH; Chau YF; Plum E; Guo GY; Zheludev NI; Tsai DP
    Opt Express; 2012 Apr; 20(9):9415-20. PubMed ID: 22535031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetry breaking and strong coupling in planar optical metamaterials.
    Aydin K; Pryce IM; Atwater HA
    Opt Express; 2010 Jun; 18(13):13407-17. PubMed ID: 20588471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring magnetic dipole emission with plasmonic split-ring resonators.
    Hein SM; Giessen H
    Phys Rev Lett; 2013 Jul; 111(2):026803. PubMed ID: 23889429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A standing-wave interpretation of plasmon resonance excitation in split-ring resonators.
    Chen WY; Lin CH
    Opt Express; 2010 Jun; 18(13):14280-92. PubMed ID: 20588563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional cut wire pair behavior and controllable bianisotropic response in vertically oriented meta-atoms.
    Burckel DB; Adomanis BM; Sinclair MB; Campione S
    Opt Express; 2017 Dec; 25(25):32198-32205. PubMed ID: 29245883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.