These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 29041183)
1. Enhancement of higher-order plasmonic modes in a dense array of split-ring resonators. Seliuta D; Šlekas G; Vaitkūnas A; Kancleris Ž; Valušis G Opt Express; 2017 Oct; 25(21):25113-25124. PubMed ID: 29041183 [TBL] [Abstract][Full Text] [Related]
2. Resonance modes in stereometamaterial of square split ring resonators connected by sharing the gap. Wang SL; Xiao JJ; Zhang Q; Zhang XM Opt Express; 2014 Oct; 22(20):24358-66. PubMed ID: 25322011 [TBL] [Abstract][Full Text] [Related]
3. Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study. Wallauer J; Bitzer A; Waselikowski S; Walther M Opt Express; 2011 Aug; 19(18):17283-92. PubMed ID: 21935092 [TBL] [Abstract][Full Text] [Related]
4. Modulating Fundamental Resonance in Capacitive Coupled Asymmetric Terahertz Metamaterials. Rao SJM; Srivastava YK; Kumar G; Roy Chowdhury D Sci Rep; 2018 Nov; 8(1):16773. PubMed ID: 30425280 [TBL] [Abstract][Full Text] [Related]
5. A sensitive and selective terahertz sensor for the fingerprint detection of lactose. Han B; Han Z; Qin J; Wang Y; Zhao Z Talanta; 2019 Jan; 192():1-5. PubMed ID: 30348363 [TBL] [Abstract][Full Text] [Related]
6. Extremely high Q-factor terahertz metasurface using reconstructive coherent mode resonance. Yan F; Li Q; Wang Z; Tian H; Li L Opt Express; 2021 Mar; 29(5):7015-7023. PubMed ID: 33726211 [TBL] [Abstract][Full Text] [Related]
7. Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials. Chen J; Mao P; Xu R; Tang C; Liu Y; Wang Q; Zhang L Opt Express; 2015 Jun; 23(12):16238-45. PubMed ID: 26193596 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Fano resonance of organic material films deposited on arrays of asymmetric split-ring resonators (A-SRRs). Lahiri B; McMeekin SG; De la Rue RM; Johnson NP Opt Express; 2013 Apr; 21(8):9343-52. PubMed ID: 23609645 [TBL] [Abstract][Full Text] [Related]
9. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. Zhang Q; Wen X; Li G; Ruan Q; Wang J; Xiong Q ACS Nano; 2013 Dec; 7(12):11071-8. PubMed ID: 24215162 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials. Yang S; Tang C; Liu Z; Wang B; Wang C; Li J; Wang L; Gu C Opt Express; 2017 Jul; 25(14):15938-15946. PubMed ID: 28789104 [TBL] [Abstract][Full Text] [Related]
11. Correlative electron energy loss spectroscopy and cathodoluminescence spectroscopy on three-dimensional plasmonic split ring resonators. Bicket IC; Bellido EP; Meuret S; Polman A; Botton GA Microscopy (Oxf); 2018 Mar; 67(suppl_1):i40-i51. PubMed ID: 29584929 [TBL] [Abstract][Full Text] [Related]
13. Fano resonance arising due to direct interaction of plasmonic and lattice modes in a mirrored array of split ring resonators. Seliuta D; Šlekas G; Valušis G; Kancleris Ž Opt Lett; 2019 Feb; 44(4):759-762. PubMed ID: 30767980 [TBL] [Abstract][Full Text] [Related]