These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29041187)

  • 1. Solution of the inhomogeneous Maxwell's equations using a Born series.
    Krüger B; Brenner T; Kienle A
    Opt Express; 2017 Oct; 25(21):25165-25182. PubMed ID: 29041187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact and approximate solutions of Maxwell's equations for a confocal cavity.
    Varga P; Török P
    Opt Lett; 1996 Oct; 21(19):1523-5. PubMed ID: 19881712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technique for handling wave propagation specific effects in biological tissue: mapping of the photon transport equation to Maxwell's equations.
    Handapangoda CC; Premaratne M; Paganin DM; Hendahewa PR
    Opt Express; 2008 Oct; 16(22):17792-807. PubMed ID: 18958061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical solution of the time-dependent Maxwell's equations for random dielectric media.
    Harshawardhan W; Su Q; Grobe R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8705-12. PubMed ID: 11138172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics.
    Greene JH; Taflove A
    Opt Express; 2006 Sep; 14(18):8305-10. PubMed ID: 19529206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces.
    Deng S
    Comput Phys Commun; 2008 Dec; 179(11):791-800. PubMed ID: 20559461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional fast marching for geometrical optics.
    Capozzoli A; Curcio C; Liseno A; Savarese S
    Opt Express; 2014 Nov; 22(22):26680-95. PubMed ID: 25401818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-element solution of Maxwell's equations with Helmholtz forms.
    Paulsen KD
    J Opt Soc Am A Opt Image Sci Vis; 1994 Apr; 11(4):1434-44. PubMed ID: 8189287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of subwavelength metallic gratings using a new implementation of the recursive convolution finite-difference time-domain algorithm.
    Banerjee S; Hoshino T; Cole JB
    J Opt Soc Am A Opt Image Sci Vis; 2008 Aug; 25(8):1921-8. PubMed ID: 18677354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implicit high-order unconditionally stable complex envelope algorithm for solving the time-dependent Maxwell's equations.
    Chen S; Zang W; Schülzgen A; Liu J; Han L; Zeng Y; Tian J; Song F; Moloney JV; Peyghambarian N
    Opt Lett; 2008 Dec; 33(23):2755-7. PubMed ID: 19037416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications of the hybrid projection method for analysis of electromagnetic scattering by inhomogeneous bodies of revolution.
    Semernya EI; Skobelev SP
    J Opt Soc Am A Opt Image Sci Vis; 2020 Dec; 37(12):1873-1882. PubMed ID: 33362128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computationally efficient finite-difference modal method for the solution of Maxwell's equations.
    Semenikhin I; Zanuccoli M
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2531-8. PubMed ID: 24323014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots.
    Ardakani AG; Mahdavi SM; Bahrampour AR
    Appl Opt; 2013 Feb; 52(6):1317-24. PubMed ID: 23435005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of a weak scattering model in aero-optic simulations and its computation.
    Xu L; Zhou Z; Ren T
    J Opt Soc Am A Opt Image Sci Vis; 2017 Apr; 34(4):594-601. PubMed ID: 28375329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Azimuthally polarized spatial dark solitons: exact solutions of Maxwell's equations in a Kerr medium.
    Ciattoni A; Crosignani B; Di Porto P; Yariv A
    Phys Rev Lett; 2005 Feb; 94(7):073902. PubMed ID: 15783817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct time integration of Maxwell's equations in two-dimensional dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons.
    Joseph RM; Goorjian PM; Taflove A
    Opt Lett; 1993 Apr; 18(7):491-3. PubMed ID: 19802177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient solution of Maxwell's equations for optical fibers with arbitrary refractive-index profiles.
    Eoll CK; Goldring T; Lucas TR
    Opt Lett; 1987 Oct; 12(10):841-3. PubMed ID: 19741891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On Maxwell's equations in non-stationary media.
    Vorgul I
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1871):1781-8. PubMed ID: 18218602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the mutual coherence function and determination of the point-spread function in a transversely and longitudinally inhomogeneous aero-optic turbulence layer.
    Monteiro A; Jarem J
    Appl Opt; 1993 Jan; 32(2):210-24. PubMed ID: 20802679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of enhanced backscattering of light by numerically solving Maxwell's equations without heuristic approximations.
    Tseng S; Kim Y; Taflove A; Maitland D; Backman V; Walsh J
    Opt Express; 2005 May; 13(10):3666-72. PubMed ID: 19495273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.