These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 29041208)

  • 1. Passive compensation of laser-induced higher-order aberrations in high-power NIR optics.
    Stubenvoll M; Schäfer B; Mann K
    Opt Express; 2017 Oct; 25(21):25407-25415. PubMed ID: 29041208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement and compensation of laser-induced wavefront deformations and focal shifts in near IR optics.
    Stubenvoll M; Schäfer B; Mann K
    Opt Express; 2014 Oct; 22(21):25385-96. PubMed ID: 25401572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beam wavefront dynamical compensation by aberrations of the gain medium in laser amplifiers for beam quality improvement.
    Liu C; Wang Y; Ye Z; Zhao Z; Xiang Z
    Opt Lett; 2014 May; 39(9):2537-40. PubMed ID: 24784039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive control of thermally induced wavefront aberrations.
    Haber A; Polo A; Maj I; Pereira SF; Urbach HP; Verhaegen M
    Opt Express; 2013 Sep; 21(18):21530-41. PubMed ID: 24104028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye.
    Kelly JE; Mihashi T; Howland HC
    J Vis; 2004 Apr; 4(4):262-71. PubMed ID: 15134473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser in situ keratomileusis disrupts the aberration compensation mechanism of the human eye.
    Benito A; Redondo M; Artal P
    Am J Ophthalmol; 2009 Mar; 147(3):424-431.e1. PubMed ID: 19058779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise measurements of the thermo-optical aberrations of an Yb:YAG thin-disk laser.
    Perchermeier J; Wittrock U
    Opt Lett; 2013 Jul; 38(14):2422-4. PubMed ID: 23939068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on the compensation of laser launch optics to improve the performance of the LGS spot.
    Liu J; Wang J; Wang Y; Tian D; Zheng Q; Lin X; Wang L; Yang Q
    Appl Opt; 2018 Feb; 57(4):648-651. PubMed ID: 29400724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced Higher-order aberrations after Laser In Situ Keratomileusis (LASIK) Performed with Wavefront-Guided IntraLase Femtosecond Laser in moderate to high Astigmatism.
    Al-Zeraid FM; Osuagwu UL
    BMC Ophthalmol; 2016 Mar; 16():29. PubMed ID: 27000109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermo-optic coefficients and thermal lensing in Nd-doped KGd(WO4)2 laser crystals.
    Loiko PA; Yumashev KV; Kuleshov NV; Pavlyuk AA
    Appl Opt; 2010 Dec; 49(34):6651-9. PubMed ID: 21124544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism.
    Marcos S; Rosales P; Llorente L; Barbero S; Jiménez-Alfaro I
    Vision Res; 2008 Jan; 48(1):70-9. PubMed ID: 18054373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anterior corneal optical irregularity measured by higher-order aberrations induced by a broad beam excimer laser.
    Hsieh YT; Wang IJ; Hu FR
    Clin Exp Optom; 2012 Sep; 95(5):522-30. PubMed ID: 22591225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corneal and total wavefront aberrations in phakic and pseudophakic eyes after implantation of monofocal foldable intraocular lenses.
    Iseli HP; Jankov M; Bueeler M; Wimmersberger Y; Seiler T; Mrochen M
    J Cataract Refract Surg; 2006 May; 32(5):762-71. PubMed ID: 16765792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive control of modal properties of optical beams using photothermal effects.
    Arain MA; Korth WZ; Williams LF; Martin RM; Mueller G; Tanner DB; Reitze DH
    Opt Express; 2010 Feb; 18(3):2767-81. PubMed ID: 20174106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active compensation of wavefront aberrations by controllable heating of lens with electric film heater matrix.
    Chen H; Hou L; Zhou X
    Appl Opt; 2016 Aug; 55(24):6634-8. PubMed ID: 27556982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous measurement of thermo-optic and stress-optic coefficients of polymer thin films using prism coupler technique.
    Hossain MF; Chan HP; Uddin MA
    Appl Opt; 2010 Jan; 49(3):403-8. PubMed ID: 20090804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the thermally induced focal shift of processing optics for ultrafast lasers with average powers of up to 525 W.
    Faas S; Foerster DJ; Weber R; Graf T
    Opt Express; 2018 Oct; 26(20):26020-26029. PubMed ID: 30469695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE).
    Pilar J; Slezak O; Sikocinski P; Divoky M; Sawicka M; Bonora S; Lucianetti A; Mocek T; Jelinkova H
    Appl Opt; 2014 May; 53(15):3255-61. PubMed ID: 24922211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direction-dependent waist-shift-difference of Gaussian beam in a multiple-pass zigzag slab amplifier and geometrical optics compensation method.
    Li Z; Kurita T; Miyanaga N
    Appl Opt; 2017 Oct; 56(30):8513-8519. PubMed ID: 29091633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigations on the active compensation of the focal shift in scanning systems using a temperature signal.
    Nagel F; Patschger A; Bergmann JP; Bliedtner J
    Appl Opt; 2018 May; 57(13):3561-3569. PubMed ID: 29726525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.