These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 29041239)

  • 1. Subcutaneous veins depth measurement using diffuse reflectance images.
    Goh CM; Subramaniam R; Saad NM; Ali SA; Meriaudeau F
    Opt Express; 2017 Oct; 25(21):25741-25759. PubMed ID: 29041239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing depth and thickness of a local blood region in skin tissue using diffuse reflectance images.
    Nishidate I; Maeda T; Aizu Y; Niizeki K
    J Biomed Opt; 2007; 12(5):054006. PubMed ID: 17994894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing veins from color images under varying illuminations for medical applications.
    Jia R; Tang C; Wang B
    J Biomed Opt; 2021 Sep; 26(9):. PubMed ID: 34541836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depth visualization of a local blood region in skin tissue by use of diffuse reflectance images.
    Nishidate I; Aizu Y; Mishina H
    Opt Lett; 2005 Aug; 30(16):2128-30. PubMed ID: 16127932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The Effects of Skin Thickness on Optical Transmission Characteristics in Fruits Tissues].
    Shi SN; Tan ZJ; Xie J; Lu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1817-23. PubMed ID: 26717732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical investigation of lens based setup for depth sensitive diffuse reflectance measurements in an epithelial cancer model.
    Zhu C; Liu Q
    Opt Express; 2012 Dec; 20(28):29807-22. PubMed ID: 23388808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance.
    Yudovsky D; Pilon L
    Appl Opt; 2010 Apr; 49(10):1707-19. PubMed ID: 20357850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin.
    Arimoto H; Egawa M; Yamada Y
    Skin Res Technol; 2005 Feb; 11(1):27-35. PubMed ID: 15691256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquisition of skin characteristics by Monte Carlo modeling and evolutionary setting of parameters.
    Cantú Rodríguez JM; Puente Ramírez NP; Montes Tapia FF; Torres Treviño LM
    Skin Res Technol; 2020 Sep; 26(5):740-748. PubMed ID: 32274895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reflectance measurement using digital camera and a protecting dome with built in light source.
    Välisuo P; Harju T; Alander J
    J Biophotonics; 2011 Aug; 4(7-8):559-64. PubMed ID: 21780302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of vein width and depth on ultrasound-guided peripheral intravenous success rates.
    Witting MD; Schenkel SM; Lawner BJ; Euerle BD
    J Emerg Med; 2010 Jul; 39(1):70-5. PubMed ID: 19272730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vein pattern recognition based on RGB images using Monte Carlo simulation and ridge tracking.
    Tang C; Zhang Y; Han L; Chen X
    J Forensic Sci; 2022 May; 67(3):1002-1020. PubMed ID: 35137409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo.
    Popov AP; Bykov AV; Meglinski IV
    J Biomed Opt; 2017 Nov; 22(11):1-4. PubMed ID: 29160043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting superficial vein visibility at the upper limb in healthy young adults: A cross-sectional observational study.
    Mukai K; Fujii T; Nakajima Y; Ishida A; Kato M; Takahashi M; Tsuda M; Hashiba N; Mori N; Yamanaka A; Nakatani T
    J Vasc Access; 2020 Nov; 21(6):900-907. PubMed ID: 32189558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wearable diffuse reflectance sensor for continuous monitoring of cutaneous blood content.
    Zakharov P; Talary MS; Caduff A
    Phys Med Biol; 2009 Sep; 54(17):5301-20. PubMed ID: 19687533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state total diffuse reflectance with an exponential decaying source.
    Symvoulidis P; Jentoft KM; Garcia-Allende PB; Glatz J; Ripoll J; Ntziachristos V
    Opt Lett; 2014 Jul; 39(13):3919-22. PubMed ID: 24978771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smartphone imaging of subcutaneous veins.
    Lewis W; Franco W
    Lasers Surg Med; 2018 Dec; 50(10):1034-1039. PubMed ID: 29873404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time dual-modal vein imaging system.
    Mela CA; Lemmer DP; Bao FS; Papay F; Hicks T; Liu Y
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):203-213. PubMed ID: 30291592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of regional hemoglobin concentration in biological tissues using diffuse reflectance spectroscopy with a novel spectral interpretation algorithm.
    Chen P; Fernald B; Lin W
    Phys Med Biol; 2011 Jul; 56(13):3985-4000. PubMed ID: 21666291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.